Electronic Supplementary Information

Dual-Functional Iodine Photoelectrode Enabling High Performance Photoassistant Rechargeable Lithium Iodine Batteries

Jingfa Li^{a*}, Hongmin Liu^a, Kaiwen Sun^b, Ronghao Wang^a, Chengfei Qian^a, Feng Yu^a, Lei Zhang^a, Weizhai Bao^{a*}

^a School of Chemistry and Materials Science
Nanjing University of Information Science & Technology
Nanjing, 210044, China.
E-mail: aplijf@nuist.edu.cn; weizhai.bao@nuist.edu.cn
^b Australian Centre for Advanced Photovoltaics
School of Photovoltaic and Renewable Energy Engineering
University of New South Wales
Sydney, Australia 2052.

The working principle of the proposed photo-assisted rechargeable Li-I₂ battery can be summarized as follows:

Photoassisted charge-Cathode:

Dye + hv	\rightarrow	Dye*	step 1
$Dye^* + TiO_2$	\rightarrow	TiO_2 -Dye ⁺ + TiO_2 -Dye ⁻	step 2
$3I^- + 2Dye^+$	\rightarrow	I_3 + 2Dye	step 3
Anode:			

 $Li^+ + e^- \rightarrow Li$ step 4

Figure S1. Structure of dye N719.

Figure S2. Ultraviolet-visible spectrum of the electrolyte used after cycling under illuminated conditions.

Figure S3. In situ deposition route of fabricating the $I_2@AC$ composites.

Figure S4. a) and b) SEM diagram of the battery charging to 2.8V. c) Cross-sectional view of the material coated on the FTO conductive glass. d) and e) SEM diagram of the battery discharging to 3.8V. f) Low and g) high-magnification SEM of the $I_2@AC$ composites. Initial SEM diagram of the h) TiO₂ and i) the hybrid $I_2@AC/N719$ -dye/TiO₂ photoelectrode.

Figure. S4a, S4b and S4d, S4e are SEM images of the photo-assisted rechargeable Li-I₂ battery after cyclic charging to 2.8V and 3.8V respectively. Element mapping in Figure 2a-d showed that the iodine ions generated by the reaction are uniformly attached to the surface of activated carbon. The I₂@AC composite is coated on the N719 sensitized upper layer, as shown in Figure S4c. Figure S4f, S4g are SEM images of the uncirculated I₂@AC composite material at low and high magnification, and the porous structure of activated carbon can be seen. The morphology of the integrated electrode of I₂@AC/N719-dye/TiO₂ is shown in

Figure S4i. It is observed that $I_2@AC/N719$ -dye can be well adsorbed on the TiO₂ nanofilm surface, which can increase the efficiency of interfacial charge injection.

Figure S5. XRD patterns of pure iodine, pure AC and $I_2@AC$.

Figure S6. The XPS C 1s, I 3d, and O 1s peaks of $I_2@AC$ composites.

Figure S7. Raman spectra of pure iodine, pure AC and $I_2@AC$.

Figure S8. The UV-vis absorption spectra of I_2 @AC composites and I_2 .

Elemental iodine and $I_2@AC$ composite materials were dissolved in ethanol aqueous solution. After one week, the solutions were tested by The UV-vis absorption spectra (Figure S8). The test results show that the $I_2@AC$ composite material does not have an obvious peak of iodide ion, which verifies that iodine is very well adsorbed in the matrix AC.

Figure S9. a and b) XPS peak of C1s before and after charging. c and d) XPS peak of O1s before and after charging.

As indicated in **Figure S9a**, the high-resolution C 1s spectrum shows that a main peak of 284.7 eV corresponds to C=C, and two sub-peaks are concentrated at 285.7 eV and 290.1 eV, corresponding to C-C and C=O.moreover, the high-resolution O 1s peak in **Figure S9c** corresponds to the C=O and C-O bond. After the illumination cycle, the intensity of C 1s peak increased, but the O 1s peak decreased significantly, as shown in **Figure S9b and S9d**, indicating the decrease of oxygen-containing functional groups.

Figure S10. a)The inset shows the corresponding nitrogen sorption isotherms of AC and $I_2@AC$ composites. b) The pore size distribution curve of AC and $I_2@AC$ composites.

Figure S11. a) and b) The photoassisted charging curves at a current density of 100 mAh g^{-1} of the photoassisted chargeable Li-I₂ battery under the illumination.

Figure S12. GCD curves at 100 mAh g⁻¹ under dark and illuminated conditions.

Figure S13. Cycle performance of the I_2 @AC composites at 100 mAh g⁻¹ rate under dark and illuminated conditions (the shaded region).

Figure S14. Rate capabilities of the as-prepared $I_2@AC$ composites.

Figure S15. AC impedance spectra of the photoassisted rechargeable Li-I_2 battery in dark and illuminated conditions.

Figure S16. After fully discharged, the chronoampere curve of 1000 seconds of dark and illuminated under 3.1 V constant voltage charging.

Figure S17. Constant current discharge curve after chronoampere test under dark and illuminated conditions.

Figure S18. Optical photos of an LED bulb and grouped LED powered by a photoassisted rechargeable Li-I₂ battery, the inset shows the prepared electrode sheet.

Battery Types	Photo	photocharging voltage	Specific capacity	energy efficiency	Ref.
	electrode		F J		
Aqueous Li-I ₂	Dye z907	2.9 V	89 mAh g ⁻¹	100 %	2
Battery			$(0.50 \text{ mA cm}^{-2})$		
Aqueous Li-I ₂ Battery	α-Fe ₂ O ₃	3.43 V	160 mAh g ⁻¹ (0.50 mA cm ⁻²)	95.4 %	3
chargeable Li-	TiO ₂	2.78 V	137 mAh g ⁻¹	121 %	4
ion battery			0.04 mA cm ⁻²		
Li-I ₂ batteries	_	3.0 V	133mAh g ⁻¹	93 %	5
(iodine/β-CD)			(105.5 mA g ⁻¹)		
aqueous Zn-I ₂ battery	TiO ₂	0.56 V	83 mAh g ⁻¹	93 %	6
			(0.5 mA g ⁻¹)		
Aqueous Sodium-Ion	TiO ₂	0.08 V	110 mAh g ⁻¹	111 %	7
Battery			$(0.50 \text{ mA cm}^{-2})$		
Photo-assisted	Dye N719	2.85 V	193 mAh g ⁻¹	93 %	This Work
Li-I ₂ Battery			(105.5 mA g ⁻¹)		
(This Work)					

 Table S1 A detail comparison of the performances of the recently reported Li-I2

 batteries. ^[2-7]

The energy efficiency (η) of the photo-assisted battery can be expressed as:

 $\eta = E_{out} / E_{in} \times 100 \%$ [8]

Reference

- M. Y. A. Rahman, A. A. Umar, R. Taslim and M. M. Salleh, *Electrochimica Acta*, 2013, 88, 639-643.
- M. Yu, W. D. McCulloch, D. R. Beauchamp, Z. Huang, X. Ren and Y. Wu, *Journal of the American Chemical Society*, 2015, 137, 8332-8335.
- 3. Q. Zhang, Z. Wu, F. Liu, S. Liu, J. Liu, Y. Wang and T. Yan, *Journal of Materials Chemistry A*, 2017, **5**, 15235-15242.
- 4. Q. Li, N. Li, M. Ishida and H. Zhou, *Journal of Materials Chemistry A*, 2015, **3**, 20903-20907.
- 5. F.-s. Cai, Y.-q. Duan and Z.-h. Yuan, *Journal of Materials Science: Materials in Electronics*, 2018, **29**, 11540-11545.
- 6. Y. Man, Q. Hao, F. Chen, X. Chen, Y. Wang, T. Liu, F. Liu and N. Li, *ChemElectroChem*, 2019, 6, 5872-5875.
- 7. Q. Li, N. Li, Y. Liu, Y. Wang and H. Zhou, *Advanced Energy Materials*, 2016, 6, 1600632.
- B. Deka Boruah, A. Mathieson, S. K. Park, X. Zhang, B. Wen, L. Tan, A. Boies and M. De Volder, *Advanced Energy Materials*, 2021, 11, 2100115.