Artificial light-harvesting system based on ESIPT-AIE-FRET triple fluorescence mechanism

Tangxin Xiao^{a,b,*}, Cheng Bao^a, Liangliang Zhang^a, Kai Diao^a, Dongxing Ren^a, Chunxiang Wei^{b,*},

Zheng-Yi Li^a, Xiao-Qiang Sun^c

^aSchool of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.

E-mail: xiaotangxin@cczu.edu.cn

^bDepartment of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK

E-mail: cw794@cam.ac.uk

^cInstitute of Urban & Rural Mining, Changzhou University, Changzhou 213164, China

Table of Contents

1. Supplementary characterization of L NPs	2
2. Supplementary characterization of L-NDI LHS	3
3. Control experiment based on compound C	8
4. Cu^{2+} sensing by L and L-NDI NPs	9
5. Synthesis of compound L and C	11
6. References	14

1. Supplementary characterization of L NPs

Scheme S1 The enol and keto forms of compound L.

Fig. S1. Solid-state fluorescence spectrum of L ($\lambda_{ex} = 327$ nm).

Fig. S2. UV-vis absorption spectrum of L nanoparticles (NPs) in mixed THF/H₂O ($f_w = 90\%$). [L] = 2×10^{-5} M.

Fig. S3. Zeta-potentials of (a) L NPs, (b) L-NDI NPs. $[L] = 2.00 \times 10^{-5}$ M and $[NDI] = 1 \times 10^{-7}$ M, respectively.

2. Supplementary characterization of L-NDI LHS

Fig. S4. (a) DLS data of L-NDI in THF/water ($f_w = 90\%$). (b) TEM image of L-NDI NPs.

Fig. S5. Fluorescence decay profiles of **L** NPs (orange line) and **L-NDI** NPs (red line), inset: fluorescent photographs of **L** NPs (left) and **L-NDI** NPs (right).

Table S1 Fluorescence lifetimes of L and L-NDI (D:A = 200:1) upon excitation at 327 nm, $[L] = 2.00 \times 10^{-5}$ M, $[NDI] = 1.00 \times 10^{-7}$ M, respectively.

Sample	τ_1/ns	RW1 [%]	τ_2/ns	RW2 [%]	τ/ns	χ^2
L	0.50	25.54	2.69	74.46	2.13	1.092
L-NDI (L : NDI = 200 : 1)	0.64	66.86	2.04	33.14	1.10	1.109

Fig. S6. Absolute fluorescence quantum yields ($\Phi_{f(abs)}$) (a) of **L**, (b) of **L-NDI** (**L**/**NDI** = 400/1), (c) of **L** + Cu²⁺ (**L**/Cu²⁺ = 1/1), upon excitation at 327 nm in aqueous solution. [**L**] = 2.00×10^{-5} M.

Table S2 Fluorescence quantum yields of L and L-NDI. $[L] = 2.00 \times 10^{-5}$ M, $[NDI] = 1.00 \times 10^{-7}$ M, respectively.

Sample	Flourescence quantum yields ($\Phi_{f(abs)}$)		
L	19.14%		
L-NDI ($L : NDI = 200 : 1$)	59.76%		
$L + Cu^{2+}$ (1:1)	0.18%		

Fig. S7. Fluorescence spectra of L and L-NDI (D:A = 200:1) assembly upon excitation at 327 nm.

Energy-transfer efficiency (Φ_{ET}) was calculated from fluorescence spectra by the equation S1^[S1]:

$$\Phi_{\rm ET} = 1 - I_{\rm DA} / I_{\rm D} (\rm eq. \ S1)$$

Where I_{DA} and I_D are the fluorescence intensities of L-NDI (donor and acceptor) and L (donor) at 585 nm when excited at 327 nm, respectively.

Sample	Concentration, respectively	Energy-transfer efficiency (Φ_{ET})
L-NDI ($L : NDI = 200 : 1$)	$[L] = 2.00 \times 10^{-5} M$ $[NDI] = 1.00 \times 10^{-7} M$	50.2%
L-NDI ($L : NDI = 300 : 1$)	$[L] = 2.00 \times 10^{-5} M$ $[NDI] = 6.67 \times 10^{-8} M$	41.1%
L-NDI ($L : NDI = 400 : 1$)	$[L] = 2.00 \times 10^{-5} M$ $[NDI] = 5.00 \times 10^{-8} M$	36.9%
L-NDI ($L : NDI = 500 : 1$)	$[L] = 2.00 \times 10^{-5} M$ $[NDI] = 4.00 \times 10^{-8} M$	32.8%
L-NDI ($L : NDI = 750 : 1$)	$[L] = 2.00 \times 10^{-5} M$ $[NDI] = 2.67 \times 10^{-8} M$	25.2%
L-NDI ($L : NDI = 1000 : 1$)	$[\mathbf{L}] = 2.00 \times 10^{-5} \text{ M}$ $[\mathbf{NDI}] = 2.00 \times 10^{-8} \text{ M}$	18.3%
L-NDI ($L : NDI = 2000 : 1$)	$[L] = 2.00 \times 10^{-5} M$ $[NDI] = 1.00 \times 10^{-8} M$	9.6%

Table S3 Energy-transfer efficiency with different L/NDI ratio.

Fig. S8. Fluorescence spectra of **L-NDI** (red line: $\lambda_{ex} = 327$ nm; blue line: $\lambda_{ex} = 585$ nm). The black line represents the fluorescence spectrum of **L**, which was normalized according to the fluorescence intensity at 585 nm of the red line. [**L**] = 2.00×10^{-5} M, [**NDI**] = 5.00×10^{-8} M, respectively.

The antenna effect (AE) was calculated based on the emission spectra using equation S2^[S1]:

$$AE = I'_{DA,327} / I_{DA,585} = (I_{DA,327} - I_{D,327}) / I_{DA,585}$$
 (eq. S2)

Where $I_{DA,327}$ and $I_{DA,585}$ are the fluorescence intensities at 640 nm with the excitation of the light-harvesting system at 327 nm and 585 nm, respectively. $I_{D,327}$ is the fluorescence intensities at 640 nm of L, which was normalized with the L-NDI assembly at 585 nm.

Sample	Concentration, respectively	AE
L-NDI ($L: NDI = 200: 1$)	$[L] = 2.00 \times 10^{-5} \text{ M}$ $[NDI] = 1.00 \times 10^{-7} \text{ M}$	20.9
L-NDI (L : NDI = 300 : 1)	$[L] = 2.00 \times 10^{-5} \text{ M}$ $[NDI] = 6.67 \times 10^{-8} \text{ M}$	21.1
L-NDI ($L : NDI = 400 : 1$)	$[L] = 2.00 \times 10^{-5} \text{ M}$ $[NDI] = 5.00 \times 10^{-8} \text{ M}$	23.0
L-NDI (L : NDI = 500 : 1)	$[L] = 2.00 \times 10^{-5} \text{ M}$ $[NDI] = 4.00 \times 10^{-8} \text{ M}$	16.7
L-NDI (L : NDI = 750 : 1)	$[L] = 2.00 \times 10^{-5} \text{ M}$ $[NDI] = 2.67 \times 10^{-8} \text{ M}$	15.4
L-NDI (L : NDI = 1000 : 1)	$[L] = 2.00 \times 10^{-5} \text{ M}$ $[NDI] = 2.00 \times 10^{-8} \text{ M}$	13.4
L-NDI (L : NDI = 2000 : 1)	$[L] = 2.00 \times 10^{-5} M$ $[NDI] = 1.00 \times 10^{-8} M$	6.6

Table S4 Antenna effect with different L/NDI ratio.

3. Control experiment based on compound C

Scheme S2 Chemical structure of C.

Fig. S9. (a) Fluorescence spectra of L and C NPs. $[L] = 2.00 \times 10^{-5}$ M, $[C] = 4.00 \times 10^{-5}$ M. $\lambda_{ex} = 327$ nm. (b) Fluorescence spectra of C-NDI (red line: $\lambda_{ex} = 327$ nm; blue line: $\lambda_{ex} = 585$ nm). The black line represents the fluorescence spectrum of C, which was normalized according to the fluorescence intensity at 585 nm of the red line. $[C] = 2.00 \times 10^{-5}$ M, $[NDI] = 1.00 \times 10^{-7}$ M, respectively.

Table S	S 5	The	antenna	effect	value	of	C-NDI
I GOIC .		1110	antenna	011000	, and c	U 1	~

Sample	Concentration	AE
C-NDI (C : NDI = $200 : 1$)	$[\mathbf{C}] = 2.00 \times 10^{-5} \text{ M}$ $[\mathbf{NDI}] = 1.00 \times 10^{-7} \text{ M}$	8.4

4. Cu²⁺ sensing by L and L-NDI

Fig. S10. Photograph (a) of compound **L** (b) of compound **L-NDI** interacting with metal ions under a 365 nm UV lamp.

Fig. S12. XPS spectra of (a) **L** NPs and (b) **L**-Cu NPs, inset: enlarged picture of the Cu $2p_{3/2}$ binding energy.

Fig. S13. ¹H NMR titration spectra of L on increasing concentrations of Cu^{2+} in DMSO- d_6 solution.

Fig. S14. Bar diagram of the competitive experiments of various metal cations (a) and anions (b) on the fluorescence intensity of the L-Cu²⁺ complex ($\lambda_{ex.}/\lambda_{em.} = 327/585$ nm).

Fig. S15. (a) The fluorescent titration experiment of **L** (20 μ M) to detect Cu²⁺ ($\lambda_{ex.} = 327$ nm, $\lambda_{em.} = 585$ nm). (b) The relationship between fluorescence intensity of the system at 585 nm and Cu²⁺ concentration (0 μ M–20 μ M).

5. Synthesis of compound L and C

Fig. S17. 13 C NMR spectrum (75 MHz, CDCl₃, 298 K) of compound L.

Fig. S18. HR-MS (ESI, positive mode, CH₃CN) of L.

Scheme S2 Synthesis of C

Synthesis of **C**: a mixture of **M** (150.0 mg, 0.4 mmol) and aniline (40.0 µL, 0.4 mmol) in 10 mL anhydrous ethanol solution was stirred for 8 h at room temperature. The mixture was filtered and the precipitate was washed with ethanol for three times. The solid was dried under vacuum at 50 °C to obtain the product as a fluffy powder (165.5 mg, yield 92%). ¹H NMR (300 MHz, DMSO- d_6): δ (ppm) = 13.10 (s, 1H, Ar-OH), 8.76 (s, 1H, N=CH), 7.45-7.26 (m, 6H, Ar-H), 7.20-7.10 (m, 9H, Ar-H), 7.04-6.95 (m, 7H, Ar-H), 6.72 (d, *J* = 8.4 Hz, 1H, Ar-H). ¹³C NMR (75 MHz, DMSO- d_6): δ (ppm) = 163.5, 159.5, 148.3, 143.7, 143.5, 140.8, 140.1, 136.3, 134.9, 134.6, 131.2, 131.2, 131.1, 129.9, 128.4, 128.4, 128.3, 127.4, 127.1, 127.0, 127.0, 121.8, 119.3, 116.6. HR-ESI-MS: *m/z* calcd for C₃₃H₂₅NO [M + H]⁺= 452.2009, found = 452.2007.

Fig. S20. ¹³C NMR spectrum (75 MHz, DMSO-*d*₆, 298 K) of contrast compound C.

Fig. S21. HR-MS (ESI, positive mode, CH₃CN) of C.

6. References

[S1] Hao, M.; Sun, G.; Zuo, M.; Xu, Z.; Chen, Y.; Hu, X.-Y.; Wang, L. Angew. Chem. Int. Ed. 2020, 59, 10095-10100.

[S2] Zhao, Y.-H.; Luo, Y.; Wang, H.; Guo, T.; Zhou, H.; Tan, H.; Zhou, Z.; Long, Y.; Tang, Z. *ChemistrySelect* **2018**, *3*, 1521–1526.

[S3] Li, Z.-Y.; Su, H.-K.; Zhou, K.; Yang, B.-Z.; Xiao, T.; Sun, X.-Q.; Jiang, J.; Wang, L. Dyes Pigments 2018, 149, 921–926.