Bonding dependent lithium storage behaviors of molybdenum oxides for

next-generation Li-ion batteries

Hyunwoo Kim,^a Chang-Dae Lee,^b Dong In Kim,^a Woosung Choi,^a Dong-Hwa Seo,^b Won-Sub Yoon^{a,*}

^a Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea

^b School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919 Republic of Korea

* Corresponding author:

E-mail: wsyoon@skku.edu; Postal Address: Prof. Won-Sub Yoon, Department of Energy Science, Sungkyunkwan University. Natural Sciences Campus, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, Korea (16419)

Supplementary Discussion

Capacity contribution from each component in MoO_x/rGO composite

Based on the TGA result, the weight ratio of rGO in MoO_2/rGO and MoO_3/rGO is ~19.1% and ~23.1%, respectively. The reversible capacity of ~1017 mAh g⁻¹ in MoO_2/rGO and ~1110 mAh g⁻¹ in MoO_3/rGO can be expressed as below.

$$\rightarrow 0.191 \,\alpha + 0.809 \,\beta = \sim 1017 \,\text{mAh g}^{-1}$$
 (MoO₂/rGO)

$$\rightarrow 0.231 \,\alpha + 0.769 \,\gamma = \sim 1110 \,\mathrm{mAh} \,\mathrm{g}^{-1}$$
 (MoO₃/rGO)

α: Specific reversible capacity from rGO

 β , γ : Specific reversible capacity from MoO₂ and MoO₃ in the composites The theoretical maximum capacity of rGO (α) is ~744 mAh g⁻¹ (C₆ + 2Li⁺ + 2 e⁻ = Li₂C₆), based on lithium ion accommodation on the both sides of each graphene monolayers.^{1–3}

 $\rightarrow \beta = 1081 \text{ mAh g}^{-1}, \gamma = 1099 \text{ mAh g}^{-1}.$

Therefore, the specific capacity contribution of MoO_2 in MoO_2/rGO is 1081 mAh g⁻¹, and that of MoO_3 is 1099 mAh g⁻¹.

Kinetic investigation using cyclic voltammetry

The relationship between current (i) and scan rate (v) obeys the following power laws,^{4,5} where a and b are variable constants.

$$i = av^b \tag{1}$$

Thus, the b value can be obtained by calculating the slope of the log(i) versus log(v) curves.

$$\log i = \operatorname{blog} v + \log a \tag{2}$$

The b-value is between 0.5 and 1.0, which approaches 0.5 for a diffusion-controlled process and 1.0 for a capacitive reaction.

To obtain b-value at the redox potential, the CV curves of MoO_x/rGO composite were recorded with scan rates from 0.1–0.5 mV s⁻¹, as shown in **Fig. S4**.

Supplementary Tables

Table S1. Curves fitting results of Li 1s and O 1s XPS spectra of fully lithiated MoO ₃ /rGO
and MoO ₂ /rGO electrodes after etching the surface

Spectra	Component	Position (eV)	FWHM (eV)	Area (%)
MoO2/rGO Li 1s XPS	LiF	56.4	1.273	2.8
	Li ₂ CO ₃	55.3	1.544	16.9
	Li _x MoO ₂	54.4	2.404	60.8
	Li ₂ O	53.7	2.003	10.2
	Metallic Li	52.3	1.406	9.3
MoO3/rGO Li 1s XPS	LiF	56.4	1.273	4.1
	Li ₂ CO ₃	55.3	1.544	60.0
	Li ₂ O	53.7	2.003	35.9
MoO2/rGO O 1s XPS	Li ₂ CO ₃	532.0	2.079	46.5
	Li _x MoO ₂	530.8	2.087	37.9
	Li ₂ O	528.5	1.480	15.6
MoO3/rGO O 1s XPS	Li ₂ CO ₃	532.0	2.079	66.9
	Li ₂ O	528.5	1.480	33.1

Supplementary Figures

Fig. S1. SEM images of (a)–(c) MoO₂/rGO and (d)–(f) MoO₃/rGO with different magnifications.

Fig. S2. TGA results of MoO₂/rGO and MoO₃/rGO.

Fig. S3. Cycle performance test of (a) MoO_2/rGO and (b) MoO_3/rGO during 100 cycles under a specific current of 100 mA g⁻¹. (c) Rate capability of MoO_2/rGO and MoO_3/rGO .

Fig. S4. CV curves of (a) MoO_2/rGO and (b) MoO_3/rGO with scan rate increasing from 0.1 to 0.5 mV s⁻¹. Relation between log(peak current) and log(scan rate) of (c) MoO_2/rGO and (d) MoO_3/rGO .

Fig. S5. SAED pattern of (a) MoO₂/rGO and (b) MoO₃/rGO electrodes after full discharge.

Fig. S6. Crystal structural models for calculating Mo–O bonding characteristics in (a) MoO₂, (b) LiMoO₂, (c) MoO₃, (d) LiMoO₃, and (e) Li₂MoO₃.

Fig. S7. COHP plots of (a) Li_xMoO_2 (x = 0, 1) and (b) Li_xMoO_3 (x = 0, 1, 2).

References

- 1 J.R. Dahn, T. Zheng, Y. Liu, J.S. Xue, *Science*, **1995**, *270*, 590–593.
- 2 G. Wang, B. Wang, X. Wang, J. Park, S. Dou, H. Ahn, K. Kim, J. Mater. Chem., 2009, 19, 8378–8384.
- 3 R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, *Nat. Mater.*, **2015**, *14*, 271–279.
- 4 H. Lindström, S. Södergren, A. Solbrand, H. Rensmo, J. Hjelm, A. Hagfeldt, S.-E. Lindquist, *J. Phys. Chem. B*, **1997**, *101*, 7717–7722.
- 5 H.-E. Wang, X. Zhao, K. Yin, Y. Li, L. Chen, X. Yang, W. Zhang, B.-L. Su, G. Cao, *ACS Appl. Mater. Interfaces*, **2017**, *9*, 43665–43673.