Supporting Information

Graphene-Assisted Ti₃C₂ MXene-Derived Ultrathin Sodium Titanate for Capacitive deionization with Excellent Rate Performance and Long Cycling Stability

Xiaojie Shen¹,²,³, Liqing Li⁴, Yuecheng Xiong³,⁵,⁶, Fei Yu¹*, Jie Ma³,⁴*

¹ College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, P.R. China, E-mail: fyu@vip.163.com
² Department of Environmental Science & Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing 100029, P. R. China
³ Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P.R. China
⁴ Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P.R. China, E-mail:liliqing79@126.com
⁵ Department of Chemistry, City University of Hong Kong, Hong Kong, 999077 China
⁶ Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, 999077 China
Experimental methods

1. Preparation of 2D delaminated Ti$_3$C$_2$Tx MXene

One gram of LiF (>98%) was dissolved in 20 mL of 9 M HCl. Then, 1 g of sieved Ti$_3$AlC$_2$ powders (400 mesh) was added. The mixture was kept at 40°C for 24 h under stirring with a magnetic stirrer. The resulting solid residue was washed several times with deionized water and centrifuged at a speed of 3500 rpm until the pH of the supernatant was approximately 6. The powder was mixed with deionized water and sonicated for 1 h under an ice-bath, through which Ar gas was bubbled. The resulting solution was centrifuged for 40 min at a speed of 4000 rpm. Finally, the 2D delaminated Ti$_3$C$_2$Tx colloidal was obtained. To determine the volumetric density, a syringe was used to pull out 3 ml of the colloidal suspension to filter a film. The remaining suspension was stored in sealed bottles under Ar. After drying in air, it was weighed. For all the work conducted herein, the 2D delaminated Ti$_3$C$_2$Tx MXene solution concentration was approximately 3 mg/mL.

2. Material characterization

Scanning electron microscopy (SEM, Hitachi 54800, Japan) and transmission electron microscopy (TEM, JEOL-2010F, Japan) were used to analyze the morphology and microstructure. The crystal structures were analyzed using X-ray diffraction (XRD, D8 Advance, Bruker, Germany) operated at 40 mA and 45 kV with Cu Kα radiation (λ=0.15418 nm, 5°/min, 3-65°). The Brunauer-Emmett-Teller (BET) isotherms and specific surface area (BET surface area) were obtained using a Belsorp Mini-II instrument (Japan) at 77 K. The pore size distribution profile was analyzed using the Barrett-Joyner-Halenda (BJH) model. X-ray photoelectron spectroscopy (XPS Kratos Axis UltraDLD SHIMADZU, Japan) was performed using monochromated Al Ka X-rays at a base pressure of 1×10⁻⁹ Torr.

3. Electrochemical measurement

The AC EDL electrode consisted of 80% active material, 10% acetylene black and a 10% polyvinylidene difluoride (PVDF) binder in N-methyl-2-pyrrolidone (NMP) on a graphite sheet (mass ratio). Constant voltage (CV) and galvanostatic charging-discharging (GCD) tests were performed on a three-electrode electrochemical workstation (CHI660D, Chenhua Instruments Co., China), using Pt as the counter electrode, Ag/AgCl as the reference electrode, and 1 M NaCl as the electrolyte. The specific capacitance (C, F/g) can be obtained from the CV curves using the following
equation:

\[C = \int i dV / \Delta V m v \]

(1)

where \(i \) is the current (A), \(m \) is the mass of the active material (g), \(\Delta V \) is the voltage window (V), and \(v \) is the scan rate (V/s).

Electrochemical impedance spectroscopy (EIS) was applied via a CHI660D instrument with a calomel reference electrode, and the data were obtained using a 5mV amplitude in the frequency range from \(10^5 \) Hz to 0.1 Hz.

4. Desalination experiments

The electrosorption experiments were conducted in a batch mode system with an HCDI unit cell, which included an activated carbon (AC) anode, an MXene cathode, an anion exchange membrane (AEM) and a cation exchange membrane (CEM). All the experiments were performed by applying a 30 mA/g electric current density with a flow rate of 50 ml/min, and the feed water was pumped through plastic tubes via a peristaltic pump. The conductivity of the solution was monitored by a conductivity meter (METTLER TOLEDO S230, Switzerland). The volume and temperature of the solution were maintained at 45 mL and 25°C, respectively. The relationship between the conductivity and the concentration was calibrated prior to the deionization experiments. The desalination capacity \(\Gamma \), removal rates \(v \) and energy consumption (kWh/kg-NaCl) are defined as follows:

\[\Gamma = (C_0 - C_e) \times V / m_t \]

(2)

\[v = \frac{\Gamma}{t} \]

(3)

\[\text{Energy consumption} = \frac{i \times \int v \, dt}{3.6 \times (C_e - C_0) \times V} \]

(4)

where \(C_0 \) and \(C_e \) (mg/L) are the initial and final NaCl concentrations, respectively, \(m_t \) (g) is the mass of the MXene electrode, \(i \) is the current (A), and \(V \) (L) is the volume of the NaCl solution.
Figure S1. TEM images of Ti3C2Tx (a, b) and M-NTO/rGO (c, d).
Figure S2 typical high-resolution XPS of C1s (a) and Ti 2p (b) of MXene.
Table S1 Comparison of various reported electrodes applied for CDI.

<table>
<thead>
<tr>
<th>Electrode materials</th>
<th>C_0 (mg/L)</th>
<th>Applied voltage/current density</th>
<th>SAC (mg/g)</th>
<th>Long term-stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>MnO_2</td>
<td>500</td>
<td>1.4</td>
<td>14.9</td>
<td>350</td>
</tr>
<tr>
<td>Hybrid-MnO_2</td>
<td>850</td>
<td>1.2</td>
<td>27.3</td>
<td>-</td>
</tr>
<tr>
<td>Na_4Mn_9O_18</td>
<td>580</td>
<td>1.2</td>
<td>31.2</td>
<td>-</td>
</tr>
<tr>
<td>aNa_2FeP_2O_7</td>
<td>580</td>
<td>1.2</td>
<td>30.2</td>
<td>-</td>
</tr>
<tr>
<td>AC-Ti-S</td>
<td>500</td>
<td>1.2</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>Ag coated carbon composite</td>
<td>580</td>
<td>0.7</td>
<td>15.6</td>
<td>-</td>
</tr>
<tr>
<td>Graphene@Na_4Ti_9O_20</td>
<td>250</td>
<td>1.4</td>
<td>41.8</td>
<td>-</td>
</tr>
<tr>
<td>M-NTO/rGO</td>
<td>1000</td>
<td>30mA/g/1.4V</td>
<td>57.57</td>
<td>100</td>
</tr>
</tbody>
</table>

References

