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Experimental methods
1. Preparation of 2D delaminated Ti;C,Ty MXene

One gram of LiF (>98%) was dissolved in 20 mL of 9 M HCI. Then, 1 g of sieved
Ti3AlC, powders (400 mesh) was added. The mixture was kept at 40°C for 24 h under
stirring with a magnetic stirrer. The resulting solid residue was washed several times
with deionized water and centrifuged at a speed of 3500 rpm until the pH of the
supernatant was approximately 6. The powder was mixed with deionized water and
sonicated for 1 h under an ice-bath, through which Ar gas was bubbled. The resulting
solution was centrifuged for 40 min at a speed of 4000 rpm. Finally, the 2D delaminated
Ti;C, Ty colloidal was obtained. To determine the volumetric density, a syringe was
used to pull out 3 ml of the colloidal suspension to filter a film. The remaining
suspension was stored in sealed bottles under Ar. After drying in air, it was weighed.
For all the work conducted herein, the 2D delaminated Ti;C,T, MXene solution
concentration was approximately 3 mg/mL.
2. Material characterization

Scanning electron microscopy (SEM, Hitachi 54800, Japan) and transmission
electron microscopy (TEM, JEOL-2010F, Japan) were used to analyze the morphology
and microstructure. The crystal structures were analyzed using X-ray diffraction (XRD,
D8 Advance, Bruker, Germany) operated at 40 mA and 45 kV with Cu Ka radiation
(A=0.15418 nm, 5°/min, 3-65°). The Brunauer-Emmett-Teller (BET) isotherms and

specific surface area (BET surface area) were obtained using a Belsorp Mini- Il
instrument (Japan) at 77 K. The pore size distribution profile was analyzed using the
Barrett-Joyner-Halenda (BJH) model. X-ray photoelectron spectroscopy (XPS Kratos
Axis UltraDLD SHIMADZU, Japan) was performed using monochromated Al Ka X-
rays at a base pressure of 1x10- Torr.
3. Electrochemical measurement

The AC EDL electrode consisted of 80% active material, 10% acetylene black and
a 10% polyvinylidene difluoride (PVDF) binder in N-methyl-2-pyrrolidone (NMP) on
a graphite sheet (mass ratio). Constant voltage (CV) and galvanostatic charging-
discharging (GCD) tests were performed on a three-electrode electrochemical
workstation (CHI660D, Chenhua Instruments Co., China), using Pt as the counter
electrode, Ag/AgCl as the reference electrode, and 1 M NaCl as the electrolyte. The

specific capacitance (C, F/g) can be obtained from the CV curves using the following



equation:

C= fidV/Ava )

where i is the current (A), m is the mass of the active material (g), AV is the voltage
window (V), and v is the scan rate (V/s).

Electrochemical impedance spectroscopy (EIS) was applied via a CHI660D
instrument with a calomel reference electrode, and the data were obtained using a SmV
amplitude in the frequency range from 10° Hz to 0.1 Hz.

4. Desalination experiments

The electrosorption experiments were conducted in a batch mode system with an
HCDI unit cell, which included an activated carbon (AC) anode, an MXene cathode,
an anion exchange membrane (AEM) and a cation exchange membrane (CEM). All the
experiments were performed by applying a 30 mA/g electric current density with a flow
rate of 50 ml/min, and the feed water was pumped through plastic tubes via a peristaltic
pump. The conductivity of the solution was monitored by a conductivity meter
(METTLER TOLEDO S230, Switzerland). The volume and temperature of the solution
were maintained at 45 mL and 25°C, respectively. The relationship between the
conductivity and the concentration was calibrated prior to the deionization experiments.
The desalination capacity (/'), removal rates (v) and energy consumption (kWh/kg-
NaCl) are defined as follows:

[=(C,-C,)*xV/m,
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where Cy and C, (mg/L) are the initial and final NaCl concentrations, respectively, m;,
(g) 1s the mass of the MXene electrode, i is the current (A), and V' (L) is the volume of
the NaCl solution.



Figure S1. TEM images of Ti3C2Tx (a, b) and M-NTO/rGO (c, d).
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Figure S2 typical high-resolution XPS of Cls (a) and Ti 2p (b) of MXene.



Table.S1 Comparison of various reported electrodes applied for CDI.

Electrode materials C, (mg Applied SAC (mg/g) Long Ref.

(Cathode) /L) voltage/curren term-
t density stabillity
MnO, 500 1.4 14.9 350 (1]
Hybrid-MnO, 850 1.2 27.3 - 2]
Na;MnyOqg 580 1.2 31.2 - 3]
aNa,FeP,0, 580 1.2 30.2 - 4]
AC-Ti-S 500 1.2 10 - [5]
Ag coated carbon 580 0.7 15.6 - 6]
composite
Grapheme@Na,Tiy 250 1.4 41.8 - 7]
Oy
M-NTO/rGO 1000 30mA/g/1.4V 57.57 100 This
work
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