Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supporting Information

On the mineralization of nanocellulose to produce functional hybrid materials

Luis Valencia^{a*}, Rishab Handa^b, Susanna Monti^c, Alma Berenice Jasso-Salcedo^d, Dimitrios Georgouvelas^e, Ilse Magaña^d, Ramón Díaz de León^d, Krassimir P. Velikov^{f,g,h}, Aji P. Mathew^e and Sugam Kumar^{i*}

^a Biofiber Tech Sweden AB, Birger Jarlsgatan 57 C, SE -113 56 Stockholm

^b Experimental Physics, Saarland University, 66123, Saarbrucken, Germany

^c CNR-ICCOM–Institute of Chemistry of Organometallic Compounds, via Moruzzi 1,56124 Pisa, Italy

^d Research Center for Applied Chemistry, Enrique Reyna Hermosillo, No.140, Col. San José de los Cerritos, Saltillo 25294, Mexico

^e Department of Materials and Environmental Chemistry, Stockholm University, Frescativägen 8, 10691, Stockholm, Sweden

^f Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, the Netherlands

^g Unilever Innovation Centre Wageningen, Bronland 14, 6708 WH

^h Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands ⁱ Solid-State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India

 Table S1. Summary of the different characterization techniques utilized to evaluate nanocellulose-based hybrid

 materials. (References designated as R (e.g. R1 to R20) are given below this table in SI, while rest of the references are present in main manuscript).

Class	Different Techniques	Information obtained	Ref.	Selected example	Advantages/limitatio
	Raman Spectroscopy	Chemical structure of a material, phase, and polymorphism, vibrational energy modes,	124,126, R1,R2	Ref. R2 shows that the hybrid of Ag nanoparticle- decorated bacterial nanocellulose can be used as a 3D flexible substrate for surface-enhanced Raman scattering (SERS)	Advantages: Fast, non-destructive, highly specific, no sample preparation required, suitable for several organic and inorganic materials, not interfered by water.
S					Limitations: The possibility of fluorescence interference. Laser- induced degradation is possible for sensitive samples. Not suitable for metals and alloys.
Spectroscopic technique	Infrared Spectroscopy (FTIR)	Information about the different functional groups present in cellulose and the modification in them upon hybridization	99,166,17 7,178,180 ,182,183, R3-R5	In ref. 99, FTIR spectroscopy confirmed the formation of leaf- like zeolitic imidazolate frameworks (ZIF-L) in nanocellulose foams and interactions therein.	Advantages:Fast, non-destructive, highly specific, no sample preparation required.Limitations:Some materials absorb Infrared radiation.Difficultto differentiate functional groups with characteristic peaks in the same spectral range.
	Nuclear Magnetic Resonance Spectroscopy (NMR)	Detail information about the functional groups, topology, three-dimensional structure of molecules as well as dynamics, reaction rate, and environment of molecules	126,R1	In ref. R1, boron– CNF interactions and the chemistry of CNF–Boric acid– sepiolite hybrids were examined by solid-state ¹¹ B MAS NMR spectroscopy.	Advantages:Non- destructive,highly specific,no samplepreparation required.Limitations:Determiningthe structureof high molecularmolecularweight moleculesis problematic.problematic.Only nucleihaving magnetic moments can be analyzed.Long timesrequired per analysis.

X-ray Photoelectron Spectroscopy (XPS)	Elemental composition, and electronic state of all elements in a material (surface chemistry of the material)	124, 159,180,1 83,R6,R7	In ref. 180, XPS spectra of CNF- MOF have been investigated for evaluating the interactions between the two components.	Advantages: Highly sensitive to elements and their valance states, effective for a variety of organic and inorganic materials, sensitive to all elements (except hydrogen and helium) with high sensitivity. Limitations: Very surface sensitive, so avoid surface contamination at all cost. Not sensitive to hydrogen and helium. Compatibility of the samples with high vacuum environment is needed
Energy dispersive X- Ray Spectroscopy	Elemental composition	88,99,173 ,176-178	In ref. 99, the homogenous distribution of the in-situ growth ZIF-	Advantages: Relatively quick elemental analysis and mapping. Sensitive to
(EDS/EDAX/E DX)			L in a gelatin/NC hybrid foam has been demonstrated using EDS mapping.	elements with atomic numbers as low as C, spectra are easily interpretable
				Limitations: Not sensitive to very low Z elements like H, He, Li. Only atomic information, not molecular, limited sensitivity \sim concentrations of the order of 0.1%.
Extended X- Ray Absorption Fine Structure (EXAFS) and X-ray Absorption Near-Edge	Chemical composition, coordination environment, the identity of neighboring atoms, their distance from the excited atom.	R2	In ref. R2, XANES measurements could confirm the oxidation state of silver nanoparticles in CNC-AgNp hybrids whereas EXAFS could	Advantages: Extremely specific, highly local providing, distribution of atoms only within the first 1-2 shells surrounding the absorber.
Structure (XANES) Spectroscopy			reveal bulk atomic structure (e.g., bond length, interatomic distance) of the AgNP.	Limitations: Requirement of high intense broad-band x- radiation source (synchrotron), EXAFS pattern will be a superposition of two distinct atoms of the absorber type.
Photoluminesc ence Spectroscopy	Photoluminescence response of the hybrids, information about the defect states, band	R8	In ref R8, The trap levels were identified in	Advantages: Fast, in- situ measurement.

		gap in semiconducting nanoparticles		hierarchical TiO2 superstructures, formed by mineralization of Cellulose.	Limitation: Not generally a quantitative technique, complex data analysis, not all molecules produce fluorescence/luminesc ence.
	UV-visible Spectroscopy	Evidencing the formation of metallic nanoparticles in the cellulose matrix, measuring the transmittance of hybrid films	59,63,163 ,180,280, R5,R9	In ref. 63, UV-Vis spectra of the plasmonic nanopaper of cellulose-silver nanoparticles are reported.	Advantages: Non-destructive, fast, in-situ, particle quantification, sensitive to shape/size of the nanoparticles also, easy to use, minimal processing, inexpensive.
					Limitations: Data interpretation becomes tricky if many species present in the sample absorb light.
	Circular dichroism spectroscopy	Cholesteric liquid crystalline phases of the CNC and modifications in it on hybridization	61,R9	In ref. 61, chirality transfer from the host mesoporous CNC film to gold nanoparticles was investigated by circular dichroism studies	Advantages: Ease of measurements, small amount required, sample recovery possible. Possible to monitor changes (e.g., conformation, stability, binding) in dif. Environments.
					Limitations : Only qualitative analysis of data. Does not provide atomic-level structure analysis.
	Scanning Electron Microscopy (SEM)	Surface structure and morphology, particle size and shape	88,91,92, 99,108,16 3,R3,R5, R6	Ref. 99 shows the distribution of MOF on CNF and the impact of charge density on the morphology of the hybrid using SEM	Advantages: High- resolution images of a sample surface provide structural parameters as well as morphology.
Microscopy					Limitations: Need to coat non-conductive samples (e.g., cellulose) vacuum environment, sample preparation is required, possibility of artifacts.
	Transmission Electron Microscopy (TEM)	Structural parameters (shape, size etc.), morphology, chirality, 3D reconstruction	28,03, R3	In ref. 58, tilting in cryo-TEM was used to create 3D tomograms of palladium patches deposited onto CNC.	Advantages: Magnification of much higher degree than SEM, direct imaging, possibility of electron diffraction.

				Limitations:
				Requirement of thin
				sample layer not very
				sensitive to the low 7
				matariala magaihility
				materials, possibility
				of sample destruction
				(biological) vacuum
				environment, sample
				preparation is
				required, the
				possibility of artifacts.
Atomic Force	Topographical	49,167,	In ref 49, AFM was	Advantages: A great
Microscopy	characterization of surfaces	130,131,	used to elucidate the	alternative for beam-
(AFM)	and high-resolution imaging of	R10,R11	in-situ growth of	sensitive materials
(/ 11 101)	soft matter and biological		metal ovide	(like most soft
	somples		nononarticles on	(ince most soft matter) 3D imaging
	samples.		TOCNE this films	is reacible can be
			TOCNF thin films.	is possible, can be
				used in vacuum as
				well as in air and
				liquid. Provides
				details of the surface,
				able to perform force
				measurements
				between particle-
				particles and particle-
				surface.
				Limitations:
				Scanning speed is
				significantly slower
				than other advanced
				microscopes such as
				SEM Small goon
				SEIVI. Sman scan
C C 1		R10 R12	L C D12 (1	image size.
Confocal	3D images of surface textures	R13	In ref R13, the	Advantages: Very
microscopy	and objects. Selective staining	K15	nanocellulose-	low and controllable
	using fluorophores allows		titania hybrids have	depth of field,
	visualizing structures of		been examined for	elimination of
	interest within a specimen.		cell transplantation	background away
			support material, by	from the focal plane,
			studying cell	and ability to collect
			viability using	serial optical sections.
			confocal laser	Higher contrast and
			scanning	definition, compared
			microscope.	to wide-field
			1	techniques.
				Limitation: Limited
				number of excitation
				wavelengths of
				commonly available
				locare high intensity
				lasers, ingli-intensity
				laser can destruct the
·	T . 1	122 D14	L 0 100	biological samples.
Tomography	Internal structures (3D	155,K14	In ret. 133,	Advantages: Can
	imaging) of hybrid materials,		synchrotron X-ray	provide 3D
	using either x-rays or neutrons,		tomography has	information.
	or electrons		been used to study	
			the three-	Limitation: not
			dimensional	suitable for all
			structure of	elements (e.g. x-rav
1			11 1 11	
			cellulose -silica	tomography is not

				In ref. R14, Internal mesopores could be identified in calcined SiO2- CNC-polymer hybrids using 3D electron tomographic reconstruction	elements and neutron tomography can not be carried out for the elements, (which can undergo nuclear reaction on interaction with neutrons)
	Rheology	Rheological properties (storage modulus, loss modulus, viscosity) display the mechanical and flowability properties of gels, hydrogels, elastomers, emulsions, etc.	45, 88,126,R5 ,R15	In ref. R15, viscoelastic solid behavior of hybrid inks of TOCNF- MOF is studied	Advantages: easy to measure, provide information in real- time, extremely sensitive, exchangeable geometries to analyse diverse types of samples. Disadvantages: The high sensitivity can bring misleading conclusions. Difficult
Macroscopic properties	Zeta-potential measurements	Stability provides an idea of the surface charge in terms of zeta-potential. Can be useful to optimize the formulations of suspensions, formation of films and to predict interactions with surfaces	130, 167,176,1 82,202,R1 6	In ref R16, electrophoretic mobility, as well as electrolytic conductivity of the dispersed silver nanoparticles in the CNF, have been determined by zeta potential measurements, employing laser doppler electrophoresis.	to analyze complex systems. Advantages: easy to measure, no sample preparation required, in-situ, non- destructive. Limitations: Does not provide exactly the surface charge. Difficult to interpret the results in the presence of multiple charged species. Not always possible for solid samples.
	BET measurement	Measurement of surface area, porosity. Useful on vapor, CO ₂ , and other gases adsorption properties.	99,163,17 6,177,179 ,180,183, R3,R4,R6	In ref. 179, the porosity of the hybrid aerogels, prepared by in-situ growth of MOF nanoparticles on bacterial cellulose has been probed through N ₂ sorption	Advantages: Small amounts of sample, non- destructive analysis. Limitation: Drying and degassing of samples collapses 3D structures, risk of underestimated nanocellulose gas untake.

	Thermogravim etric Analysis	Thermal stability, amount of the inorganic material in the cellulose matrix, gas sorption/desorption by weight.	110,11 2,176, R5	In ref 110, TGA was used to i) prove the zeolite loadings in nanocellulose-based foams, and ii) perform cyclic absorption measurements of CO ₂ , and measure the selectivity towards nitrogen.	Advantages: mostly all the solid samples can be analyzed with minimal or no specific sample preparation, high accuracy, and precision of balance. Limitation: Data interpretation is not always straightforward, non- homogenous samples cannot be tested, difficult to interpret the results for the mixture of samples.
	Quartz crystal microbalance with dissipation	In-situ adsorption on a substrate, amount of adsorbed material, and the details of the adsorbed layer.	49,130,13 1,R11,R1 2	In ref 49, in-situ formation of small nanoclusters of metal oxides in nanocellulose has been detected by QCMD.	Advantage: provides in-situ information, fast, highly sensitive providing adsorbed mass in the range ng percm ²
					Limitations: data modeling can be difficult particularly in the case of non- homogeneous deposition, the thickness of the film is also restricted. Restricted to liquid and non-harsh solvents.
techniques	X-ray diffraction	Crystalline structure of the CNC/embedded nanoparticles	166,177, 178,180, 182	In ref. 178, XRD has been used to confirm the crystal structure of MOF synthesized on the TOCNF template.	Advantages: Easy identification of unknown materials to determine composition with few samples and straightforward analysis. Also elucidates the oxidation state and more information.
ttering			Diff		Limitation: only crystallizable samples can be measured. Non-dynamic method.
Sca	Dynamic light scattering	Hydrodynamic size, diffusion coefficients	K17	In ref R17, The mean hydrodynamic diameter, polydispersity index, and particles size distributions have been determined in	Advantages: In-situ, non-destructive, fast Limitations: highly sensitive to impurities like dust.

			cellulose-silver nanoparticle hybrids using DLS.	
Small-angle X- ray scattering	Size, size distribution, shape, morphology of the hybrids	49,126,12 8,R18	In ref. 49, the growth of metal oxide nanoparticles in nanocellulose has been observed by in- situ SAXS.	Advantages: measures samples in native condition, fast, sensitive to shapes/morphology, provides a statistically better picture than microscopy techniques. Limitations: data modeling is difficult (provides data in Fourier space), can
				damage the sample particularly at synchrotron sources, not good for low Z materials
Small-angle neutron scattering (SANS)	Size, size distribution, shape, morphology of the hybrids	126,129,R 19, R20	In ref. R19, morphological structure of cellulose-based organic-inorganic nanocomposite materials has been examined using SANS.	Advantages: Measures samples in native condition, fast, sensitive to shapes/morphology, provides statistically better picture than microscopy techniques, sensitive to low Z materials as well as differentiate between isotopes, unique advantage of contrast variation in multi-component hybrids.
				Limitations: data modelling is difficult (provides data in Fourier space), not possible for neutron absorbing samples.

References (R1-R20)

References designated as R (e.g. R1 to R20) are given below this table in SI, while rest of the references are present in main manuscript.

R1.	B. Wicklein, D. Kocjan, F. Carosio, G. Camino, L. Bergström
	Chem. Mater. 2016, 28, 7, 1985–1989
	https://doi.org/10.1021/acs.chemmater.6b00564
R2.	D. Huo, B. Chen, G. Meng, Z. Huang, M. Li, Y. Lei
	ACS Appl. Mater. Interfaces 2020, 12, 45, 50713–50720
	https://doi.org/10.1021/acsami.0c13828
R3.	S. Sepahvand, M. Jonoobi, A. Ashori, F. Gauvin, H.J.H Brouwers, K. Oksman, O. Yuc
	Carbohydr. Polym 230, 115571 (2020).
	https://doi.org/10.1016/j.carbpol.2019.115571
R4.	C. Wang, S. Okubayashi
	Carbohydr Polym 225 (2019)
	https://doi.org/10.1016/j.carbpol.2019.115248
R5	R Rukmanikrishnan C. Io S. Choi S. Ramalingam I. Lee
кэ.	ACS Omega 2020 5 28767–28775
	https://doi.org/10.1021/acsomega.0c04087
R6	W Zhu X Yao X Zhang H Jiang Z Wang W Chen X Xue
R 0.	und Eng Chem Res 59 16660–16668 (2020)
	https://doi.org/10.1021/acs.jecr.0c02687
R 7	D Dhar I Ftula S B Barkar
К/.	ACS Appl Bio Mater 2019 2 4052–4066
	https://doi.org/10.1021/acsahm.9600581
R 8	G P Nair S K Sandarshi P Raury
Ко.	G. K. Nan, S. K. Sandarshi, D. Douly
	https://doi.org/10.1002/ejic.2013.00669
R0	G Chu H Vin H Jiang D Cu V Shi D Ding V Yu Ultrafact Ontical Modulation of Pationally Engineered
К).	Bedrain-Plasmonic Coupling in Self. A ssembled Nanocrystalline Cellulose/Silver Hybrid Material
	L Phys Chem C 2016 120 27541–27547
	DOI: 10.1021/acsince.6b09052
R10	B Vollick P Kuo H T Aubin N Van F Kumacheva
R 10.	Chem Mater 2017 29 2 780–795
	https://doi.org/10.1021/acs.chemmater.6b04780
R11	O Köklikava F Carosio I. Wågherg Superior Flame-Resistant Cellulose Nanofibril Aerogels Modified with
K 11.	Hybrid I aver, hys. I aver Coatings
	ACS And Mater Interfaces 2017 9 34 29082–29092
	https://doi.org/10.1021/acsami.7508018
R12	K Junka I Guo I Eilmannen I Laine O I Roias
1012.	Biomacromolecules 2014 15 3 876–881
	https://doi.org/10.1021/hm4017176
R13	L A -Sales S R -Sanchez M L S -Guisado A Laromaine A Roig
1015.	ACS Biomater, Sci. Eng. 2020, 6, 4893–4902
	https://doi.org/10.1021/acsbiomaterials.0c00492
R14	M Morits V Hynninen Nonanna A Niederberger O Ikkala A H Gröschel M Müllner
	Polym, Chem., 2018, 9, 1650–1657
	DOI: 10.1039/c7nv01814h
R15	S Sultan H N Abdelhamid X Zou A P Mathew
	Adv. Func. Mater. 2019. 29, 1805372
	https://doi.org/10.1002/adfm.201805372
R16.	Effect of different conditions of synthesis on properties of silver nanonarticles stabilized by nanocellulose from
	carrot pomace
	https://doi.org/10.1016/j.carbpol.2020.116513
R17.	J. Cieśla, M. Chylińska, A. Zdunek, M. Szymańska-Chargot.

	Carbohydr. Polym. 2020, 245, 116513.
	https://doi.org/10.1016/j.carbpol.2020.116513.
R18.	L. Medina, Y. Nishiyama, K. Daicho, T. Saito, M. Yan, L.A. Berglund,
	Macromolecules 2019 , 52 (8), 3131–3140.
	https://doi.org/10.1021/ACS.MACROMOL.9B00333.
R19.	E. V Velichko, A. L Buyanov, N. N. Saprykina, Y. O. Chetverikov, C. P. Duif, W. G. Bouwman, R. Y.Smyslov,
	Eur. Polym. J. 2017 , 88, 269–279.
	https://doi.org/10.1016/J.EURPOLYMJ.2017.01.034.
R20.	R.Yu Smyslov, K. V Ezdakova, G. P. Kopitsa, A. K Khripunov, A. N. Bugrov, A. A. Tkachenko, B. Angelov,
	V. Pipich, N. K. Szekely, A. E. Baranchikov, E. Latysheva, Y. O. Chetverikov, V. Haramus, J. Phys. Conf. Ser.
	2017, 848, 12017. https://doi.org/10.1088/1742-6596/848/1/012017.