Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information for

Functionalized MXenes for efficient electrocatalytic nitrate reduction to ammonia

Tao Hu,^{†a} Mengting Wang,^{†a} Chunxian Guo,^{*a} and Chang Ming Li^{*a,b}

a. Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
b. Institute for Cross-field Science and College of Life Science, Qingdao University, Qingdao 200671, China

† These authors contributed equally. Email: cxguo@usts.edu.cn; cmli@usts.edu.cn.

Supplementary summary

Part I Calculation Details	2
Part II Supplementary Tables and Figures	4
TEST	6
Pristine M ₃ C ₂ MXene	24
$M@Ti_3C_2$	26
$Ti_3C_2O_2-O_v$	28
Activity origin	32
Tables	50
References	56

Part I Calculation Details

Total: $r1 \rightarrow r2 \rightarrow r3 \rightarrow r4 \rightarrow r5 \rightarrow r6 \rightarrow r7 \rightarrow r8$

NRA1: $NO_3^{-} \rightarrow *NO_3 \rightarrow *NO_2 \rightarrow *NO \rightarrow *N \rightarrow *NH \rightarrow *NH_2 \rightarrow *NH_3 \rightarrow NH_3(g)$			
*+NO ₃ -(1) \rightarrow *NO ₃ +e ⁻	(r1)		
$*NO_3 + 2H^+ + 2e^- \rightarrow *NO_2 + H_2O$	(r2)	*NO ₃ →*NO ₂ +*O	(r2')
*NO ₂ + 2H ⁺ + 2e ⁻ \rightarrow *NO + H ₂ O	(r3)	*NO ₂ →*NO+*O	(r3')
*NO + 2H ⁺ +2e ⁻ \rightarrow *N + H ₂ O	(r4)	*NO→*N+*O	(r4')
$*N + H^+ + e^- \rightarrow *NH$	(r5)	*N+*H→*NH	(r5')
*NH + H ⁺ + e ⁻ \rightarrow *NH ₂	(r6)	*NH+*H \rightarrow *NH ₂	(r6')
*NH ₂ + H ⁺ + e ⁻ \rightarrow *NH ₃	(r7)	*NH ₂ +*H \rightarrow *NH ₂	(r7')
$*NH_3 \rightarrow * + NH_3$	(r8)		

Table S1. Potential NRA pathways on MXene and the elementary step	S
---	----------

$\mathrm{NO}_3^- + 9\mathrm{H}^+ + 8\mathrm{e}^- \longrightarrow \mathrm{NH}_3 + 3\mathrm{H}_2\mathrm{O}$					
NRA2: $NO_3^- \rightarrow *NO_3^- \rightarrow *NO_2 \rightarrow *NO \rightarrow *NOH \rightarrow *NHOH \rightarrow *NH_3 \rightarrow NH_3(g)$					
*NO + H ⁺ + $e^- \rightarrow$ *NOH	(r9)	*NO+*H→*NOH	(r9')		
*NOH + H ⁺ + $e^- \rightarrow$ *NHOH	(r10)	*NOH+*H→*NHOH	(r10')		
*NHOH + H ⁺ + e ⁻ \rightarrow *NH+H ₂ O (r11) *NHOH+*H \rightarrow *NH+H ₂ O (r11')					
Total: $r1 \rightarrow r2 \rightarrow r3 \rightarrow r9 \rightarrow r10 \rightarrow r11 \rightarrow r6 \rightarrow r7 \rightarrow r8$					

$NO + H^{+} + e^{-}$	→ *NOH	$(\mathbf{r}0)$	*NO+*H→*NOH	(r

 $NO_3^{-} \rightarrow *NO_3^{-} \rightarrow *NO_2 \rightarrow *NO \rightarrow *NOH \rightarrow *NHOH \rightarrow *NH_2OH \rightarrow *NH_2 \rightarrow *NH_3 \rightarrow NH_3($

(r12) *NHOH+*H \rightarrow *NH₂OH (r12')

 $\mathrm{NO_3^-} + 9\mathrm{H^+} + 8\mathrm{e^-} \rightarrow \mathrm{NH_3} + 3\mathrm{H_2O}$

*NHOH + H⁺ + $e^- \rightarrow *NH_2OH$

g)

NRA3:

Total :
$$r1 \rightarrow r2 \rightarrow r3 \rightarrow r9 \rightarrow r10 \rightarrow r12 \rightarrow r13 \rightarrow r7 \rightarrow r8$$

 $NO_3^- + 9H^+ + 8e^- \rightarrow NH_3 + 3H_2O$

Equations r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13 were used for thermodynamics calculation. Equations r2', r3', r4', r5', r6', r7', r9', r10', r11', r12', r13' were used to calculate kinetics.

Table S2. NRA1 reaction steps and pH correction to Gibbs free energy

NRA1: $NO_3^- \rightarrow *NO_3^- \rightarrow$	$*NO_2 \rightarrow *NO \rightarrow *N-$	×*NH→*NH ₂ →*	$*NH_3 \rightarrow NH_3(g)$
---	---	--------------------------	-----------------------------

$*+\mathrm{NO}_{3}^{-}(\mathrm{l}) \rightarrow *\mathrm{NO}_{3}+\mathrm{e}^{-}$	(r1)	$\Delta G_1 = \Delta G_1^0$
*NO ₃ + 2H ⁺ + 2e ⁻ \rightarrow *NO ₂ + H ₂ O	(r2)	$\Delta G_2 = \Delta G_2^0 + 2k_B T \ln 10 \times pH$
*NO ₂ + 2H ⁺ + 2e ⁻ \rightarrow *NO + H ₂ O	(r3)	$\Delta G_3 = \Delta G_3^0 + 2k_B T \ln 10 \times pH$
*NO + 2H ⁺ +2e ⁻ \rightarrow *N + H ₂ O	(r4)	$\Delta G_4 = \Delta G_4^0 + 2k_B T \ln 10 \times pH$
$*N + H^+ + e^- \rightarrow *NH$	(r5)	$\Delta G_5 = \Delta G_5^0 + k_B T \ln 10 \times pH$
*NH + H ⁺ + e ⁻ \rightarrow *NH ₂	(r6)	$\Delta G_6 = \Delta G_6^0 + k_B T \ln 10 \times pH$
$*\mathrm{NH}_2 + \mathrm{H}^+ + \mathrm{e}^- \rightarrow *\mathrm{NH}_3$	(r7)	$\Delta G_7 = \Delta G_7^0 + k_B T \ln 10 \times pH$
*NH ₃ \rightarrow * + NH ₃	(r8)	$\Delta G_8 = \Delta G_8^0$

The elementary steps of competing hydrogen evolution reactions are described as:

* + H⁺
$$\rightarrow$$
 *H (Volmer step) (r14)

*H + H⁺ + e⁻
$$\rightarrow$$
 * + H₂ (Heyrovsky step) (r15)

$$2^*H \rightarrow * + H_2 \text{ (Tafel step)} \tag{r16}$$

For Volmer-Heyrovsky process:

 $\Delta G = \Delta G_{max}^{0} + k_{B} T \ln 10 \times pH$

For Volmer-Tafel process:

$$\Delta G = 2\Delta G_{max}^{0} + 2k_{B}Tln10 \times pH$$

Note that the ΔG_{max}^{0} is the maximum value of *H adsorption or desorption.

Part II Supplementary Tables and Figures

Species	TΔS (eV)	Literature(eV)
H_2	0.40	0.41ª
H ₂ O(0.035bar)	0.67	0.67ª
NH ₃	0.60	0.60 ^b

Table S3. Corrections of entropic contribution of gas for H_2O , H_2 and NH_3 used in the Gibbs free energy calculations

a Data from Norskov's work¹

b Data from Lange's handbook,²Table 1.56, Page 1.238, T Δ S (NH₃)=192.78 Jdeg⁻¹mol⁻¹ × 298.15 K = 0.60 eV

Species	$\Delta ZPE (eV)$	Literature(eV) ³
*NO3	0.39	0.42
*NO ₂	0.22	0.28
*NO	0.16	0.17
*N	0.09	0.08
*NH	0.36	0.38
*NH ₂	0.61	0.69
*NH ₃	0.95	1.00
*Н	0.17	0.17
H_2	0.28	0.27
H ₂ O	0.58	0.57
NH ₃	0.93	0.91
HNO ₃	0.70	-
*NOH	0.45	0.45
*NHOH	0.72	0.79

Table S4. The correction of zero-point energy of adsorption species and molecules involved in NRA reaction.

Fig. S1 Schematic of Ti_3C_2 basal plane and edge plane models used in the study.

TEST

Fig. S2 (a) ENCUT test on Ti_3C_2 , KSPACING is set to 0.3, 0.4, 0.5, 0.6, 0.7 Å⁻¹. The free energies at varied KSPACING are close. (b) KSPACING test on Ti_3C_2 , ENCUT is set to 300, 400, 450, 500, 600, 650, 700 eV.

Fig. S3 Gibbs free energy diagram of NRA on Ti_3C_2 MXene calculated by DFT and DFT+U+sol. Though free energy change (ΔG) in each reaction step changes, the trend and RDS are same. NRA1: NO₃⁻ \rightarrow *NO₃ \rightarrow *NO₂ \rightarrow *NO \rightarrow *N \rightarrow *NH \rightarrow *NH₂ \rightarrow *NH₃ \rightarrow NH₃(g) is the most favorable reaction pathway, and RDS is still *NH₂ \rightarrow *NH₃.

Substrate	DFT (eV)	DFT+U+sol (eV)	ΔE_{value} (eV)
Ti ₃ C ₂	-402.98	-329.47	73.51
*NO ₃	-430.69	-357.49	73.20
*NO ₂	-425.04	-351.88	73.16
*NO	-420.35	-346.71	73.63
*N	-413.66	-340.27	73.39
*NH	-417.78	-344.25	73.53
*NH ₂	-420.84	-347.25	73.59
*NH ₃	-423.51	-349.85	73.66
*Н	-407.51	-333.97	73.54
Mo ₃ C ₂	-453.14	-354.93	98.21
*NO ₃	-480.52	-381.40	99.12
*NO ₂	-474.92	-375.68	99.24
*NO	-468.52	-368.78	99.74
*N	-463.22	-363.37	99.85
*NH	-467.19	-367.21	99.98
*NH ₂	-470.71	-371.57	99.14
*NH ₃	-474.25	-374.96	99.29
*Н	-456.93	-358.23	98.71
V ₃ C ₂	-419.30	-332.57	86.73
*NO ₃	-446.65	-360.34	86.31
*NO ₂	-441.10	-354.35	86.74
*NO	-435.77	-348.27	87.50
*N	-429.57	-342.74	86.82
*NH	-433.46	-346.78	86.68
*NH ₂	-436.70	-349.80	86.89

Table S5. Comparison of total energy calculated by DFT and DFT+U+sol

*NH ₃	-439.98	-353.10	86.88
*Н	-422.52	-336.37	86.15
Cr ₃ C ₂	-413.03	-345.07	67.96
*NO ₃	-440.54	-374.04	66.50
*NO ₂	-434.98	-367.73	67.25
*NO	-428.73	-362.30	66.43
*N	-422.97	-356.16	66.81
*NH	-427.20	-359.63	67.57
*NH ₂	-430.48	-363.31	67.16
*NH ₃	-433.97	-366.05	67.91
*H	-416.79	-349.94	66.85
*H Nb ₃ C ₂	-416.79 -454.72	-349.94 -389.66	66.85 65.06
*H Nb ₃ C ₂ *NO ₃	-416.79 -454.72 -482.22	-349.94 -389.66 -417.73	66.85 65.06 64.49
*H Nb ₃ C ₂ *NO ₃ *NO ₂	-416.79 -454.72 -482.22 -476.67	-349.94 -389.66 -417.73 -412.06	66.85 65.06 64.49 64.60
*H Nb ₃ C ₂ *NO ₃ *NO ₂ *NO	-416.79 -454.72 -482.22 -476.67 -471.61	-349.94 -389.66 -417.73 -412.06 -406.78	66.85 65.06 64.49 64.60 64.82
*H Nb ₃ C ₂ *NO ₃ *NO ₂ *NO *N	-416.79 -454.72 -482.22 -476.67 -471.61 -465.34	-349.94 -389.66 -417.73 -412.06 -406.78 -400.62	66.85 65.06 64.49 64.60 64.82 64.72
*H Nb ₃ C ₂ *NO ₃ *NO ₂ *NO *N *N	-416.79 -454.72 -482.22 -476.67 -471.61 -465.34 -469.23	-349.94 -389.66 -417.73 -412.06 -406.78 -400.62 -404.27	66.85 65.06 64.49 64.60 64.82 64.72 64.96
*H Nb ₃ C ₂ *NO ₃ *NO ₂ *NO *N *NH *NH	-416.79 -454.72 -482.22 -476.67 -471.61 -465.34 -469.23 -472.48	-349.94 -389.66 -417.73 -412.06 -406.78 -400.62 -404.27 -407.45	66.85 65.06 64.49 64.60 64.82 64.72 64.96 65.03
*H Nb ₃ C ₂ *NO ₃ *NO ₂ *NO *N *NH *NH *NH ₂ *NH ₃	-416.79 -454.72 -482.22 -476.67 -471.61 -465.34 -469.23 -472.48 -475.63	-349.94 -389.66 -417.73 -412.06 -406.78 -400.62 -404.27 -407.45 -410.54	66.85 65.06 64.49 64.60 64.82 64.72 64.96 65.03 65.10

 ΔE_{value} is the difference between total energies calculated by the two methods. For each substrate, the total energy values of different intermediates all shift to positive direction after considering U and solvation effect.

Stable

Fig. S4 Atomic structure of *NO₃ (* = M_3C_2 , M=Ti, Mo, V, Cr, Nb) before and after optimization.

Fig. S5 The atomic structure of *NO₃ (*= M_3C_2 , M=Ta, Zr, Hf) before and after optimization.

Fig. S6 The overview of reaction kinetics along different NRA pathways on pristine Ti_3C_2 . "×" means that this intermediate decomposes on Ti_3C_2 . The activation energy of each elementary step is given in eV.

Fig. S7 Geometry of *NHOH, *NH₂OH, *NO₂H, *NO₃+*H and *NO₃H+*H on Ti_3C_2 before and after optimization.

Fig. S8 Minimum energy path and activation barrier of elementary step $NO_3 \rightarrow NO_2 + O$. TS stands for transition state.

Table S6. Calculated frequencies of TS in reaction $*NO_3 \rightarrow *NO_2 + *O$. The only one imaginary frequency is highlighted in grey

No.	Frequency
1f=	189.98 meV
2f=	132.84 meV
3f=	112.08 meV
4f =	88.36 meV
5f =	79.46 meV
6f =	64.10 meV
7f=	34.89 meV
8f=	28.53 meV
9f =	19.97 meV
10f =	12.21 meV
11f=	1.62 meV
12f/i =	-6.24 meV

Fig. S9 Minimum energy path of elementary step $*NO_2 \rightarrow *NO+*O$. This step proceeds without barrier.

Fig. S10 Minimum energy path and activation barrier of elementary step $NO \rightarrow N+*O$. TS stands for transition state.

imaginary frequency is highlighted in grey	
No.	Frequency
1f=	79.90 meV
2f =	58.94 meV
3f=	51.04 meV
4f =	39.40 meV
5f =	32.24 meV

-1.69 meV

6f/i =

Table S7. Calculated frequencies of TS in reaction $NO \rightarrow N+N$. The only one imaginary frequency is highlighted in grey

Fig. S11 Minimum energy path and activation barrier of elementary step $*N+*H\rightarrow*NH$. TS stands for transition state.

Table S8. Calculated frequencies of TS in reaction $*N+*H\rightarrow*NH$. The only one imaginary frequency is highlighted in grey

No.	Frequency
1f=	130.81 meV

2f=	78.84 meV
3f =	63.43 meV
4f =	49.81 meV
5f =	47.36 meV
6f/i =	-169.25 meV

Fig. S12 Minimum energy path and activation barrier of elementary step $*NH+*H\rightarrow*NH_2$. TS stands for transition state.

Table S9. Calculated frequencies of TS in reaction $*NH+*H\rightarrow*NH_2$. The only one imaginary frequency is highlighted in grey

No.	Frequency
1f=	457.02 meV
2f =	394.10 meV
3f =	188.98 meV
4f =	81.29 meV
5f =	50.59 meV

6f=	41.34 meV
7f=	30.11 meV
8f=	12.08 meV
9f/i =	-34.94 meV

Fig. S13 Minimum energy path and activation barrier of elementary step $*NH_2+*H\rightarrow*NH_3$. TS stands for transition state.

Table S10. Calculated frequencies of TS in reaction $*NH_2+*H \rightarrow *NH_3$. The only one imaginary frequency is highlighted in grey

No.	Frequency
1f=	412.14 meV
2f =	396.08 meV
3f =	373.88 meV
4f =	188.59 meV
5f =	185.62 meV

6f=	143.25 meV
7f =	60.48 meV
8f=	46.82 meV
9f=	29.11 meV
10f =	22.92 meV
11f=	8.28 meV
12f/i =	-11.36 meV

Fig. S14 Minimum energy path and activation barrier of elementary step $NO^{+*}H \rightarrow NOH$. TS stands for transition state.

Table S11. Calculated frequencies of TS in reaction $NO+*H\rightarrow NOH$. The only one imaginary frequency is highlighted in grey

No.	Frequency
1f=	152.51 meV
2f=	108.48 meV
3f =	94.16 meV
4f =	55.84 meV

5f =	47.82 meV
6f =	44.11 meV
7f =	27.14 meV
8f =	12.43 meV
9f/i =	-168.49 meV

Fig. S15 Minimum energy path and activation barrier of elementary step $NOH^{+*}H \rightarrow N^{+}H_2O$.TS stands for transition state.

Table S12. Calculated frequencies of TS in reaction $NOH+*H\rightarrow N+H_2O$. The only one imaginary frequency is highlighted in grey

No.	Frequency
1f=	448.65 meV
2f =	192.33 meV
3f=	156.04 meV
4f =	96.11 meV
5f=	71.40 meV

6f=	50.27 meV
7f =	40.32 meV
8f=	36.85 meV
9f=	34.69 meV
10f =	28.40 meV
11f=	19.73 meV
12f/i =	-151.36 meV

Reaction coordinate

Fig. S16 Minimum energy path and activation barrier of elementary step $N^{+*}N \rightarrow N_2$. TS stands for transition state.

Table S13. Calculated frequencies of TS in reaction $*N+*N \rightarrow *N_2$. The only one imaginary frequency is highlighted in grey

No.	Frequency
1f=	66.19 meV
2f=	63.91 meV
3f =	50.38 meV

4f =	43.45 meV
5f=	34.97 meV
6f/i =	-74.81 meV

Fig. S17 Minimum energy path and activation barrier of elementary step $*NO_2+*H\rightarrow*NHO_2$. TS stands for transition state.

Table S14. Calculated frequencies of TS³ in reaction step $*NO_2+*H\rightarrow*NHO_2$. The only one imaginary frequency is highlighted in grey

No.	Frequency
1f=	120.85 meV
2f=	113.78 meV
3f =	88.47 meV
4f =	82.50 meV
5f =	51.09 meV
6f=	42.53 meV
7f =	40.52 meV

8f=	37.35 meV
9f =	16.51 meV
10f =	8.54 meV
11f=	2.93 meV
12f/i =	-63.91 meV

Fig. S18 Minimum energy path and activation barrier of elementary step $*NHO_2 \rightarrow *NHO+*O$. This step proceeds without barrier.

Fig. S19 Minimum energy path and activation barrier of elementary step $*NHO \rightarrow *NH+*O$. This step proceeds without barrier.

Fig. S20 Gibbs free energy diagram of NRA on Mo_3C_2 by vertical and parallel *NO₃ adsorption modes.

Fig. S21 Absorption sites on Ti_3C_2 edge plane. "1", "2" represent two inequivalent sites on edge plane, and "3" means intermediates are parallel with edge plane.

Fig. S22 Absorption sites on Mo_3C_2 edge plane. "1"," 2" represent two inequivalent sites on edge plane, and "3" means intermediates are parallel with edge plane.

Fig. S23 NRA pathway on (a) V_3C_2 , (b)Nb₃C₂, (c)Mo₃C₂ basal plane and edge plane.

Fig. S24 Geometric configuration of (a) $*NH_2$ and (b) $*NH_3$ on Cr_3C_2 edge plane. Left represents initial structure, and right represents structure after optimization,

Pristine M₃C₂ MXene

Fig. S25 Gibbs free energy diagram of (a) HER (Volmer-Heyrovsky) on Ti_3C_2 at pH = 0 and (b) HER (Volmer-Tafel) on M_3C_2 MXene at pH = 0.

Fig. S26 (a) Gibbs free energy diagram of NRA and (b) ΔG_{max} of HER on Cr_3C_2 at pH = 0, 7, 14, inset: ΔG_{*H} on Cr_3C_2 at pH = 0. (c) Gibbs free energy diagram of NRA and (d) ΔG_{max} of HER on Mo₃C₂ at pH = 0, 7, 14, inset: ΔG_{*H} on Mo₃C₂ at pH = 0.

Fig. S27 (a) Gibbs free energy diagram of NRA and (b) ΔG_{max} of HER on V₃C₂ at pH = 0, 7, 14, inset: ΔG_{*H} on V₃C₂ at pH = 0. (c) Gibbs free energy diagram of NRA and (d) ΔG_{max} of HER on Nb₃C₂ at pH = 0, 7, 14, inset: ΔG_{*H} on Nb₃C₂ at pH = 0.

Fig. S28 Calculated limiting potentials for HER (U_L (HER)) and NRA (U_L (NRA)) on the surfaces of six M_3C_2 candidates by Volmer-Tafel pathway at pH=0, 7, and 14.

$M@Ti_3C_2$

Fig. S29 Geometric configuration of $M@Ti_3C_2$ MXene (M=Y, Os, Tc), left represents initial structure, right structure represents optimized structure.

Fig. S30 Geometric configuration of $M@Ti_3C_2$ MXene (M=Fe, Cu, Ag), left represents initial structure, right structure represents optimized structure, $M@Ti_3C_2M$ MXene (M=Sc, Au, Co, Ni, Zn, Sr, Ru, Rh, Pd, Re, Ir, Pt, Hg) remain same results.

Absorption site

Fig. S31 Graphic of NO₃ absorption site on $M@Ti_3C_2$.

Fig. S32 Gibbs free energy of hydrogen adsorption and desorption on M@Ti₃C₂
(M=Ti, Fe, Co, Ni, Cu, Pt, Pd) basal plane at pH=0, (a) Vomer-Heyrovsky pathway,
(b) Volmer-Tafel pathway.

Fig. S33 Calculated limiting potentials for HER ($U_L(HER)$) and NRA ($U_L(NRA)$) on the surfaces of seven $M@M_3C_2$ candidates by Volmer-Tafel pathway at pH=0, 7, and 14.

 $Ti_3C_2O_2-O_v$

Fig. S34 Gibbs free energy diagram of NRA on $Ti_3C_2T_2$ - T_v at (a) pH=7, (b) pH=14. Gibbs free energy diagram of NRA on $Ti_3C_2O_2$ - nO_v at (c) pH=7, (d) pH=14. Gibbs free energy diagram of NRA on $M@Ti_3C_2O_2$ - O_v at (e) pH=7, (f) pH=14.

Fig. S35 Gibbs free energy of hydrogen adsorption and desorption on $Ti_3C_2T_2$ - T_v (T=O, OH, H, F, Cl) basal plane at pH=0, (a) Vomer-Heyrovsky pathway, (b) Volmer-Tafel pathway.

Fig. S36 Gibbs free energy of hydrogen adsorption and desorption on $Ti_3C_2O_2-nO_v$ basal plane at pH=0, (a) Vomer-Heyrovsky pathway, (b) Volmer-Tafel pathway.

Fig. S37 Gibbs free energy of hydrogen adsorption and desorption on $M@Ti_3C_2O_2-O_v$ basal plane at pH=0, (a) Vomer-Heyrovsky pathway, (b) Volmer-Tafel pathway.

Fig. S38 Calculated limiting potentials for HER (U_L(HER)) and NRA (U_L(NR(A)) on the surfaces of (a) $Ti_3C_2T_2$ -T_v, (b) $Ti_3C_2O_2$ -nO_v, (c) $M@Ti_3C_2O_2$ -O_v by Volmer-Tafel pathway at pH=0, 7, and 14.

Fig. S39 NRA reaction pathway identification on $Ti_3C_2O_2$ -nO_v. (a) 1O_v, (b)2O_v, (c) $3O_v$, (d) $4O_v$.

Fig. S40 The overview reaction kinetics for different intermediates on $Ti_3C_2O_2-O_v$ for NRA, "×" means this intermediate decomposes. The Activation energy of each elementary step is given in eV. Combined the thermodynamic and kinetics data, NRA1 is the most favorable pathway for NRA.

Fig. S41 Geometry of (a) $*NO_3+*H$, (b) $*NO_2+*H$, (c) $*NO_2H+*H$ on $Ti_3C_2O_2-1O_v$ before and after optimization.

Fig. S42 Minimum energy path and activation barrier of elementary step $*NO_3 \rightarrow *NO_2 + *O$. TS stands for transition state.

No.	Frequency
1f=	197.61 meV
2f =	143.21 meV
3f =	113.90 meV
4f =	90.51 meV
5f=	86.10 meV
6f =	83.91 meV
7f=	36.61 meV
8f=	26.01 meV
9f =	17.73 meV
10f =	16.53 meV
11f=	3.64 meV
12f/i =	-12.64 meV
$ \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow$	
0.0 -0.5 () -0.5 -1.0 -1.5 -2.0 -2.5	- *NO+*O
Reaction coordinate	

Table S15. Calculated frequencies of TS in reaction step $*NO_3 \rightarrow *NO_2 + *O$. The only one imaginary frequency is highlighted in grey

Fig. S43 Minimum energy path and activation barrier of elementary step $*NO_2 \rightarrow *NO+*O$. This step proceeds without barrier.

Fig. S44 Minimum energy path and activation barrier of elementary step $NO \rightarrow N+N$. This step proceeds without barrier.

Fig. S45 Minimum energy path and activation barrier of elementary step $*N+*H\rightarrow*NH$. TS stands for transition state.

No.	Frequency
1f=	193.91 meV
2f =	141.38 meV
3f =	66.43 meV
4f =	64.26 meV
5f =	59.74 meV
6f/i =	-204.95 meV

Table S16. Calculated frequencies of TS in reaction $*N+*H\rightarrow*NH$. The only one imaginary frequency is highlighted in grey

Fig. S46 Minimum energy path and activation barrier of elementary step $*NH+*H\rightarrow*NH_2$. TS stands for transition state.

Table S17. Calculated frequencies of TS in reaction $*NH+*H \rightarrow *NH_2$. The only one imaginary frequency is highlighted in grey

No.	Frequency
1f=	425.81 meV
S	36

Fig. S47 Minimum energy path and activation barrier of elementary step $*NH_2+*H\rightarrow*NH_3$. TS stands for transition state.

Table S18. Calculated frequencies of TS in reaction $*NH_2+*H \rightarrow *NH_3$. The only one imaginary frequency is highlighted in grey

No.	Frequency
1f=	427.91 meV
2f=	418.55 meV
3f =	197.62 meV
627	

4f =	187.52 meV
5f =	165.50 meV
6f =	92.33 meV
7f =	79.39 meV
8f =	64.23 meV
9f=	53.14 meV
10f =	37.09 meV
11f=	23.49 meV
12f/i =	-152.83 meV

Fig. S48 Minimum energy path and activation barrier of elementary step $*NO+*H\rightarrow*NOH$. TS stands for transition state.

Table S19. Calculated frequencies of TS in reaction $NO+*H \rightarrow NOH$. The only one imaginary frequency is highlighted in grey

No.	Frequency
1f=	194.02 meV

2f=	151.43 meV
3f=	127.74 meV
4f =	57.51 meV
5f=	56.78 meV
6f=	49.55 meV
7f=	39.86 meV
8f =	28.25 meV
9f/i =	-136.13 meV

Fig. S49 Minimum energy path and activation barrier of elementary step $N^*N^*N_2$. TS stands for transition state.

Table S20. Calculated frequencies of TS in reaction $*N+*N \rightarrow *N_2$. The only one imaginary frequency is highlighted in grey

No.	Frequency
1f=	74.81 meV
2f=	65.88 meV

6f/i =	-66.89 meV
5f=	28.38 meV
4f =	52.77 meV
3f =	59.35 meV

Fig. S50 Minimum energy path and activation barrier of elementary step $NOH+*H\rightarrow*NHOH$. TS stands for transition state.

Table S21. Calculated frequencies of TS in reaction $NOH+*H\rightarrow*NHOH$. The only one imaginary frequency is highlighted in grey

No.	Frequency
1f=	442.01 meV
2f =	191.98 meV
3f =	156.79 meV
4f =	148.70 meV
5f =	112.99 meV
6f =	76.16 meV

7f =	57.78 meV
8f=	45.84 meV
9f=	34.26 meV
10f =	25.39 meV
11f=	22.80 meV
12f/ i=	-193.49 meV

Fig. S51 Minimum energy path and activation barrier of elementary step $NOH^{+*}H \rightarrow N^{+}H_2O$. TS stands for transition state.

Table S22. Calculated frequencies of TS in reaction $NOH+*H\rightarrow N+H_2O$. The only one imaginary frequency is highlighted in grey

1f = 446.36 meV	
2f = 200.66 meV	
3f = 166.01 meV	
4f = 126.84 meV	

5f =	114.78 meV
6f=	67.15 meV
7f=	61.24 meV
8f=	59.50 meV
9f =	46.74 meV
10f =	32.70 meV
11f=	20.17 meV
12f/ i=	-68.53 meV

Fig. S52 Minimum energy path and activation barrier of elementary step $NHOH \rightarrow N+H_2O$. TS stands for transition state.

Table S23. Calculated frequencies of TS in reaction $NHOH \rightarrow N+H_2O$. The only one imaginary frequency is highlighted in grey

No.	Frequency	
1f=	451.79 meV	
2f=	423.45 meV	
540		

3f =	114.31 meV
4f =	108.25 meV
5f =	77.12 meV
6f =	72.87 meV
7f =	53.21 meV
8f =	49.86 meV
9f =	39.90 meV
10f =	35.12 meV
11f=	28.12 meV
12f/ i=	-62.45 meV

Fig. S53 Minimum energy path and activation barrier of elementary step $*NHOH+*H\rightarrow*NH_2OH$. TS stands for transition state.

Table S24. Calculated frequencies of TS in reaction $*NHOH+*H\rightarrow*NH_2OH$. The only one imaginary frequency is highlighted in grey

No.	Frequency
1f=	434.74 meV
2f =	424.47 meV
3f =	193.11 meV
4f =	170.52 meV
5f =	165.80 meV
6f =	150.45 meV
7f =	112.66 meV
8f =	84.27 meV
9f =	75.03 meV
10f =	55.34 meV
11f=	37.88 meV
12f =	35.89 meV
13f =	27.66 meV
14f =	24.25 meV
15f/ i=	-155.09 meV

Fig. S54 Minimum energy path and activation barrier of elementary step $*NHOH+*H\rightarrow*NH+H_2O$. TS stands for transition state.

Table S25. Calculated frequencies of TS in reaction $*NHOH+*H\rightarrow*NH+H_2O$. The only one imaginary frequency is highlighted in grey

No.	Frequency
1f=	445.75 meV
2f =	422.54 meV
3f =	399.00 meV
4f =	193.78 meV
5f =	173.35 meV
6f =	163.81 meV
7f =	155.87 meV
8f =	112.52 meV
9f =	57.26 meV
10f =	30.76 meV

Fig. S55 Minimum energy path and activation barrier of elementary step $*NH_2OH+*H\rightarrow*NH_2+H_2O$. TS stands for transition state.

Table S26. Calculated frequencies of TS in reaction $*NH_2OH+*H \rightarrow *NH_2+H_2O$. The only one imaginary frequency is highlighted in grey

No.	Frequency
1f=	450.41 meV
2f=	425.08 meV
3f =	413.17 meV
4f =	339.61 meV
5f=	201.49 meV
6f=	170.31 meV

7f=	155.39 meV
8f =	144.39 meV
9f =	140.46 meV
10f =	127.33 meV
11f=	107.15 meV
12f=	68.42 meV
13f=	34.86 meV
14f =	25.84 meV
15f=	19.11 meV
16f=	5.23 meV
17f=	4.80 meV
18f/ i=	-12.83 meV

Activity origin

Fig. S56 Bader charge of Ti on Ti_3C_2 and (a) $Ti_3C_2T_2$ -T_v, (b) $Ti_3C_2T_2$ -nO_v.

Fig. S57 d-band centers and projected density of states (PDOSs) of Ti 3d on Ti_3C_2 and (a) $Ti_3C_2T_2-1T_v$, (b) $Ti_3C_2T_2-nO_v$.

Fig. S58 Room temperature stability of partially O-vacant $Ti_3C_2O_2$ MXene. Snapshot of $Ti_3C_2O_2$ with (a) $1O_v$, (b) $2O_v$, (c) $3O_v$, (3) $4O_v$ endure 1000 fs AIMD at 300K. Except for some surface O atoms migration, no structure collapse or reconstruction of Ti_3C_2 layer was found.

Fig. S59 Magnetic moments change of Ti_3C_2 MXene-based catalysts with the presence of NRA intermediates.

Tables

Ti ₃ C ₂	$\Delta G_{max}(eV)$	Overpotential(V)	Rate determining step
vertical	1.18	-1.18	$*NH_2+H^++e^- \rightarrow *NH_3$
parallel	1.18	-1.18	$*NH_2+H^++e^- \rightarrow *NH_3$
basal plane	1.18	-1.18	$*NH_2+H^++e^- \rightarrow *NH_3$
edge plane	1.69	-1.69	*NH+H+e- \rightarrow *NH ₂

Table S27. The overpotential and RDS of NRA on Ti_3C_2 at pH=0

Table S28. The overpotential and RDS of NRA on M_3C_2 at pH=0

M_3C_2	$\Delta G_{max}(eV)$	Overpotential(V)	Rate determining step
Ti ₃ C ₂	1.18	-1.18	$*NH_2+H^++e^- \rightarrow *NH_3$
Mo_3C_2	0.39	-0.39	$*NH_2+H^++e^- \rightarrow *NH_3$
V_3C_2	0.67	-0.67	*NH+H ⁺ +e ⁻ \rightarrow *NH ₂
Cr_3C_2	1.04	-1.04	$*NH_2+H^++e^- \rightarrow *NH_3$
Nb ₃ C ₂	0.70	-0.70	*NH ₂ +H++e- \rightarrow *NH ₃

Table S29. The overpotential and RDS of NRA on $M@Ti_3C_2$ at pH=0

$M@Ti_3C_2$	$\Delta G_{max}(eV)$	Overpotential(V)	Rate determining step
Ti	1.18	-1.18	$*NH_2+H^++e^- \rightarrow *NH_3$
Fe	0.87	-0.87	$*NH_2+H^++e^- \rightarrow *NH_3$
Co	0.88	-0.88	$*NH_2+H^++e^- \rightarrow *NH_3$
Ni	1.10	-1.10	$*NH_2+H^++e^- \rightarrow *NH_3$
Cu	0.81	-0.81	$*NH_2+H^++e^- \rightarrow *NH_3$
Pt	1.31	-1.31	$*NH_2+H^++e^- \rightarrow *NH_3$
Pd	1.42	-1.42	$*NH_2+H^++e^- \rightarrow *NH_3$

Substrate	$\Delta G_{max}(eV)$	Overpotential(V)	Rate determining step
Ti ₃ C ₂	1.18	-1.18	*NH ₂ +H ⁺ +e ⁻ \rightarrow *NH ₃
$Ti_3C_2O_2$ - O_v	-0.09	0	*NH ₂ +H ⁺ +e ⁻ \rightarrow *NH ₃
Ti ₃ C ₂ OH ₂ -	1 10	1 10	Ψ λΤΙΙ ΙΙΙ+Ι - ΨλΤΙΙ
OH_v	1.18	-1.18	$NH_2 + H^2 + e^2 \rightarrow NH_3$
$Ti_3C_2H_2$ - H_v	1.04	-1.04	*NH ₂ +H++e- \rightarrow *NH ₃
$Ti_3C_2F_2$ - F_v	0.82	-0.82	*NH ₂ +H++e- \rightarrow *NH ₃
$Ti_3C_2Cl_2$ - Cl_v	0.61	-0.61	*NH ₂ +H ⁺ +e ⁻ \rightarrow *NH ₃

Table S30. The overpotential and RDS of NRA on $Ti_3C_2T_2$ -T_v at pH=0

Table S31. The overpotential and RDS of NRA reaction on Ti₃C₂O₂-nO_v at pH=0

Ti ₃ C ₂ O ₂ -nO _v	$\Delta G_{max}(eV)$	Overpotential(V)	Rate determining step
Ti ₃ C ₂	1.18	-1.18	$*NH_2+H^++e^- \rightarrow *NH_3$
$1O_v$	-0.09	0	$*NH_2+H^++e^- \rightarrow *NH_3$
$2O_{\rm v}$	0.34	-0.34	*NH+H++e-→*NH ₂
$3O_{\rm v}$	0.38	-0.38	$*NH_2+H^++e^- \rightarrow *NH_3$
$4O_{\rm v}$	0.39	-0.39	*NH ₂ +H ⁺ +e ⁻ \rightarrow *NH ₃

Table S32. The overpotential and RDS of NRA reaction on $M@Ti_3C_2O_2-O_v$ at pH=0

<i>M</i> @Ti ₃ C ₂ O ₂ - O _v	ΔG _{max} (eV)	Overpotential(V)	Rate determining step	
Ti	-0.09	0	*NH ₂ +H++ e^{-} *NH ₃	
Ir	0.28	-0.28	$*+NO_3 \rightarrow *NO_3+e^-$	

Mo	0.05	-0.05	*NH ₂ +H ⁺ +e ⁻ \rightarrow *NH ₃
W	0.18	-0.18	*NH ₂ +H ⁺ +e ⁻ \rightarrow *NH ₃
Os	0.20	-0.20	$*+NO_3 \rightarrow *NO_3+e^-$
Zr	0.47	-0.47	$*+NO_3 \rightarrow *NO_3+e^{-1}$

	Vertical	Parallel			
ΔG_1	-1.59	-2.28			
ΔG_2	-1.98	-2.64			
ΔG_3	-2.32	-0.97			
ΔG_4	-1.05	-1.05			
ΔG_5	-0.27	-0.27			
ΔG_6	0.69	0.69			
ΔG_7	1.18	1.18			
ΔG_8	0.43	0.43			
ΔG_{total}	-4.91	-4.91			

Table S33. Gibbs free energy change of each elementary step of NRA on Ti_3C_2 MXene basal plane. Vertical and parallel absorption modes of NO_3^- are considered. ΔG_{total} is the sum of all ΔG . The unit of ΔG is eV

pН		Ti	Mo	V	Nb	Cr
	ΔG_1	-1.59	-0.04	-1.33	-1.63	-2.53
	ΔG_2	-1.98	-1.87	-1.60	-1.92	-1.28
	ΔG_3	-2.32	-0.59	-1.41	-2.21	-2.07
	ΔG_4	-1.05	-2.08	-1.96	-1.33	-1.35
0	ΔG_5	-0.27	-0.13	-0.34	0.06	0.24
	ΔG_6	0.69	-0.67	0.67	0.51	0.01
	ΔG_7	1.18	0.39	0.49	0.70	1.04
	ΔG_8	0.43	0.08	0.57	0.92	1.03
	ΔG_{total}	-4.91	-4.91	-4.91	-4.91	-4.91
	ΔG_1	-1.59	-0.04	-1.33	-1.63	-2.53
	ΔG_2	-1.15	-1.04	-0.78	-1.10	-0.45
	ΔG_3	-1.50	0.23	-0.58	-1.38	-1.24
	ΔG_4	-0.22	-1.25	-1.13	-0.50	-0.52
7	ΔG_5	0.14	0.28	0.08	0.47	0.65
	ΔG_6	1.10	-0.26	1.08	0.92	0.42
	ΔG_7	1.59	0.81	0.90	1.11	1.45
	ΔG_8	0.43	0.08	0.57	0.92	1.03
	ΔG_{total}	-1.18	-1.18	-1.18	-1.18	-1.18
	ΔG_1	-1.59	-0.04	-1.33	-1.63	-2.53
	ΔG_2	-0.32	-0.21	0.05	-0.27	0.38
	ΔG_3	-0.67	1.06	0.25	-0.55	-0.41
14	ΔG_4	0.61	-0.42	-0.30	0.33	0.31
	ΔG_5	0.56	0.70	0.49	0.89	1.07
	ΔG_6	1.52	0.16	1.50	1.34	0.84
	ΔG_7	2.01	1.22	1.31	1.52	1.87
	ΔG_8	0.43	0.08	0.57	0.92	1.03
	ΔG_{total}	2.54	2.54	2.54	2.54	2.54

Table S34. Free energy change of each elementary step of NRA on M_3C_2 MXene (M=Ti, Mo, V, Cr, Nb) basal plane. The unit of ΔG is eV

pН		Ti	Мо	V	Nb
	ΔG_1	-1.72	-1.43	-1.71	-1.78
	ΔG_2	-1.79	-1.93	-1.93	-1.88
	ΔG_3	-2.45	-1.12	-2.28	-2.15
	ΔG_4	-0.24	-1.84	-1.38	-1.44
0	ΔG_5	-0.80	-0.21	-0.04	0.02
	ΔG_6	1.69	-0.06	0.58	0.33
	ΔG_7	0.22	0.68	1.18	1.13
	ΔG_8	0.18	1.00	0.67	0.87
	ΔG_{total}	-4.91	-4.91	-4.91	-4.91
	ΔG_1	-1.72	-1.43	-1.71	-1.78
	ΔG_2	-0.96	-1.10	-1.10	-1.06
	ΔG_3	-1.62	-0.29	-1.46	-1.32
	ΔG_4	0.59	-1.02	-0.55	-0.62
7	ΔG_5	-0.38	0.20	0.37	0.44
	ΔG_6	2.10	0.35	1.00	0.74
	ΔG_7	0.63	1.10	1.59	1.55
	ΔG_8	0.18	1.00	0.67	0.87
	ΔG_{total}	-1.18	-1.18	-1.18	-1.18
	ΔG_1	-1.72	-1.43	-1.71	-1.78
	ΔG_2	-0.13	-0.27	-0.27	-0.23
	ΔG_3	-0.80	0.54	-0.63	-0.50
14	ΔG_4	1.42	-0.19	0.28	0.21
	ΔG_5	0.03	0.61	0.79	0.85
	ΔG_6	2.52	0.77	1.41	1.16
	ΔG_7	1.04	1.51	2.01	1.96
	ΔG_8	0.18	1.00	0.67	0.87
	ΔG_{total}	2.54	2.54	2.54	2.54

Table S35. Free energy change of each elementary step of NRA on M_3C_2 MXene (M=Ti, Mo, V, Nb) edge plane. ΔG_{total} is the sum of all ΔG . The unit of ΔG is eV

		Ti	Mo	V	Cr	Nb
pH=0	ΔG_1	-0.89	0.31	-0.19	-1.26	-0.14
	ΔG_2	0.89	-0.31	0.19	1.26	0.14
pH=7	ΔG_1	-1.31	0.72	-0.60	-1.68	-0.55
	ΔG_2	1.31	-0.72	0.60	1.68	0.55
pH=14	ΔG_1	-1.72	1.14	-1.02	-2.09	-0.97
	ΔG_2	1.72	-1.14	1.02	2.09	0.97

Table S36. Free energy change of each elementary step of HER on M_3C_2 MXene (M= Mo, V, Cr, Nb) basal plane. The unit of ΔG is eV

References

- 1. A. ValdéS, Z. W. Qu and G. J. Kroes, J. Rossmeisl and J. K. Nørskov, *J. Phys. Chem. C*, 2008, **112**, 9872–9879.
- 2. J. A. Dean, *Lange's Handbook of Chemistry (16th Edition)*, McGraw-Hill: New York, 1999.
- 3. T. Hu, C. H. Wang, M. T. Wang, C. M. Li and C. X. Guo, *ACS Catal.*, 2021, 14417-14427.