## Nitric Oxide Reduction Reaction for Efficient Ammonia Synthesis on

## Topological Nodal-Line Semimetal Cu<sub>2</sub>Si Monolayer

Zebin Ren, Haona Zhang, Shuhua Wang, Baibiao Huang, Ying Dai\* and Wei Wei\*

School of Physics, State Key Laboratory of Crystal Materials, Shandong University,

Jinan 250100, China

\* Corresponding authors: daiy60@sdu.edu.cn (Y. Dai), weiw@sdu.edu.cn (W. Wei)

| End                                                                                                                           | -on                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| N-distal                                                                                                                      | N-alternating                                                                                                                 |
| NO (g) + * $\rightarrow$ *NO                                                                                                  | NO (g) + $* \rightarrow *$ NO                                                                                                 |
| $*NO + H^+ + e^- \rightarrow *HNO$                                                                                            | $*NO + H^+ + e^- \rightarrow *HNO$                                                                                            |
| *HNO + H <sup>+</sup> + $e^- \rightarrow$ *H <sub>2</sub> NO                                                                  | *HNO + H <sup>+</sup> + $e^- \rightarrow$ *HNOH                                                                               |
| $*H_2NO + H^+ + e^- \rightarrow *H_2NOH$                                                                                      | *HNOH + H <sup>+</sup> + $e^- \rightarrow$ *H <sub>2</sub> NOH                                                                |
| $^{*}\mathrm{H}_{2}\mathrm{NOH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{NH}_{2} + \mathrm{H}_{2}\mathrm{O}$ | $^{*}\mathrm{H}_{2}\mathrm{NOH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{NH}_{2} + \mathrm{H}_{2}\mathrm{O}$ |
| $*NH_2 + H^+ + e^- \rightarrow *NH_3$                                                                                         | $*NH_2 + H^+ + e^- \rightarrow *NH_3$                                                                                         |

**Table S1** Elementary reactions for all the considered pathways for NORR towards NH<sub>3</sub> synthesis.

| O-alternating                                                                                               | <b>O-distal</b>                                                   |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| NO (g) + $* \rightarrow *$ NO                                                                               | NO (g) + * $\rightarrow$ *NO                                      |
| $*NO + H^+ + e^- \rightarrow *NOH$                                                                          | $*NO + H^+ + e^- \rightarrow *NOH$                                |
| $*NOH + H^+ + e^- \rightarrow *HNOH$                                                                        | $*NOH + H^+ + e^- \rightarrow *N + H_2O$                          |
| *HNOH + H <sup>+</sup> + $e^- \rightarrow$ *NH + H <sub>2</sub> O                                           | $*N + H^+ + e^- \rightarrow *NH$                                  |
| $*NH + H^+ + e^- \rightarrow *NH_2$                                                                         | $*NH + H^+ + e^- \rightarrow *NH_2$                               |
| $*NH_2 + H^+ + e^- \rightarrow *NH_3$                                                                       | $*NH_2 + H^+ + e^- \rightarrow *NH_3$                             |
| Side-                                                                                                       | on                                                                |
| O-first                                                                                                     | O-enzymatic                                                       |
| NO (g) + $* \rightarrow *$ NO                                                                               | NO (g) $+ * \rightarrow *NO$                                      |
| $*NO + H^+ + e^- \rightarrow *NOH$                                                                          | $*NO + H^+ + e^- \rightarrow *NOH$                                |
| $NOH + H^+ + e^- \rightarrow N + H_2O$                                                                      | $*NOH + H^+ + e^- \rightarrow *HNOH$                              |
| $N + H^+ + e^- \rightarrow NH$                                                                              | *HNOH + H <sup>+</sup> + $e^- \rightarrow$ *NH + H <sub>2</sub> O |
| $*NH + H^+ + e^- \rightarrow *NH_2$                                                                         | $*NH + H^+ + e^- \rightarrow *NH_2$                               |
| $*NH_2 + H^+ + e^- \rightarrow *NH_3$                                                                       | $*NH_2 + H^+ + e^- \rightarrow *NH_3$                             |
| N-enzymatic                                                                                                 | N-first                                                           |
| NO (g) + $* \rightarrow *$ NO                                                                               | NO (g) + $* \rightarrow *$ NO                                     |
| $*NO + H^+ + e^- \rightarrow *HNO$                                                                          | $*NO + H^+ + e^- \rightarrow *HNO$                                |
| *HNO + H <sup>+</sup> + $e^- \rightarrow$ *HNOH                                                             | *HNO + H <sup>+</sup> + $e^- \rightarrow *H_2NO$                  |
| $*HNOH + H^+ + e^- \rightarrow *H_2NOH$                                                                     | $*H_2NO + H^+ + e^- \rightarrow *O + NH_3$                        |
| $^{*}\mathrm{H_{2}NOH} + \mathrm{H^{+}} + \mathrm{e^{-}} \rightarrow ^{*}\mathrm{NH_{2}} + \mathrm{H_{2}O}$ | $*O + H^+ + e^- \rightarrow *OH$                                  |
| $*NH_2 + H^+ + e^- \rightarrow *NH_3$                                                                       | $*OH + H^+ + e^- \rightarrow *H_2O$                               |

| itorat monte     |         |                         | ila configuration | er ne uaserpuen             |
|------------------|---------|-------------------------|-------------------|-----------------------------|
|                  | E(eV)   | $E_{\rm ZPE}({\rm eV})$ | TS (eV)           | $G\left(\mathrm{eV}\right)$ |
| *NO              | -121.20 | 0.18                    | 0.13              | -121.15                     |
| *NOH             | -124.85 | 0.47                    | 0.15              | -124.52                     |
| *HNOH            | -129.41 | 0.75                    | 0.18              | -128.84                     |
| *NH              | -119.79 | 0.38                    | 0.04              | -119.45                     |
| *NH <sub>2</sub> | -124.42 | 0.72                    | 0.07              | -123.77                     |
| *NH <sub>3</sub> | -128.41 | 1.03                    | 0.15              | -127.53                     |

**Table S2** Computed total energies (*E*), zero-point energies ( $E_{ZPE}$ ) and entropy (*TS*) of NORR intermediates on Cu–Si-bridge site with N-end configuration of NO adsorption.

**Table S3** Computed total energies (*E*), zero-point energies ( $E_{ZPE}$ ) and entropy (*TS*) of NORR intermediates on Cu–Si-bridge site with NO-side configuration of NO adsorption.

| ausorption.         |         |                          |         |                             |
|---------------------|---------|--------------------------|---------|-----------------------------|
|                     | E(eV)   | $E_{\rm ZPE}~({\rm eV})$ | TS (eV) | $G\left(\mathrm{eV}\right)$ |
| *NO                 | -120.57 | 0.16                     | 0.11    | -120.52                     |
| *HNO                | -125.27 | 0.47                     | 0.13    | -124.89                     |
| *H <sub>2</sub> NO  | -129.99 | 0.84                     | 0.14    | -129.29                     |
| *HNOH               | -128.53 | 0.78                     | 0.15    | -127.89                     |
| *0                  | -114.78 | 0.07                     | 0.06    | -114.77                     |
| *H <sub>2</sub> NOH | -132.76 | 1.09                     | 0.26    | -131.92                     |
| *NH                 | -119.79 | 0.38                     | 0.04    | -119.45                     |
| *OH                 | -119.40 | 0.34                     | 0.14    | -119.20                     |
| *H <sub>2</sub> O   | -122.49 | 0.65                     | 0.17    | -122.02                     |

|                     | $E\left(\mathrm{eV}\right)$ | $E_{\rm ZPE} ({\rm eV})$ | TS (eV) | $G\left(\mathrm{eV}\right)$ |
|---------------------|-----------------------------|--------------------------|---------|-----------------------------|
| *NO                 | -121.04                     | 0.17                     | 0.18    | -121.04                     |
| *HNO                | -125.15                     | 0.47                     | 0.21    | -124.89                     |
| *HNOH               | -129.31                     | 0.78                     | 0.22    | -128.75                     |
| *H <sub>2</sub> NOH | -133.52                     | 1.13                     | 0.21    | -132.60                     |
| *NH <sub>2</sub>    | -124.36                     | 0.65                     | 0.16    | -123.86                     |
| *NH <sub>3</sub>    | -128.41                     | 1.03                     | 0.15    | -127.53                     |

**Table S4** Computed total energies (*E*), zero-point energies ( $E_{ZPE}$ ) and entropy (*TS*) of NORR intermediates on Si site with N-end configuration of NO adsorption.

| e methou.           |         |                         |         |                             |  |
|---------------------|---------|-------------------------|---------|-----------------------------|--|
|                     | E(eV)   | $E_{\rm ZPE}({\rm eV})$ | TS (eV) | $G\left(\mathrm{eV}\right)$ |  |
| *NO                 | -96.82  | 0.18                    | 0.16    | -96.80                      |  |
| *HNO                | -100.85 | 0.47                    | 0.20    | -100.58                     |  |
| *HNOH               | -104.94 | 0.77                    | 0.25    | -104.41                     |  |
| *H <sub>2</sub> NOH | -109.14 | 1.13                    | 0.21    | -108.21                     |  |
| *NH <sub>2</sub>    | -99.98  | 0.66                    | 0.15    | -99.48                      |  |
| *NH <sub>3</sub>    | -104.03 | 1.03                    | 0.14    | -103.14                     |  |

**Table S5** Computed total energies (*E*), zero-point energies ( $E_{ZPE}$ ) and entropy (*TS*) of NORR intermediates on Si site with N-end configuration of NO adsorption by DFT + U method.

|                     | E(eV)   | $E_{\rm ZPE} ({\rm eV})$ | TS (eV) | $G\left(\mathrm{eV}\right)$ |
|---------------------|---------|--------------------------|---------|-----------------------------|
| *NO                 | -204.74 | 0.18                     | 0.17    | -204.73                     |
| *HNO                | -208.89 | 0.47                     | 0.18    | -208.6                      |
| *HNOH               | -213.00 | 0.77                     | 0.21    | -212.43                     |
| *H <sub>2</sub> NOH | -217.24 | 1.13                     | 0.21    | -216.32                     |
| *NH <sub>2</sub>    | -208.06 | 0.65                     | 0.17    | -207.58                     |
| *NH <sub>3</sub>    | -212.13 | 1.03                     | 0.15    | -211.25                     |

**Table S6** Computed total energies (*E*), zero-point energies ( $E_{ZPE}$ ) and entropy (*TS*) of NORR intermediates on Si site with N-end configuration of NO adsorption, using a 4×4 supercell.

| mene ang me ser     |         |                          |         |                             |
|---------------------|---------|--------------------------|---------|-----------------------------|
|                     | E(eV)   | $E_{\rm ZPE} ({\rm eV})$ | TS (eV) | $G\left(\mathrm{eV}\right)$ |
| *NO                 | -120.98 | 0.16                     | 0.18    | -121.00                     |
| *HNO                | -125.26 | 0.47                     | 0.14    | -124.93                     |
| *HNOH               | -129.45 | 0.78                     | 0.22    | -128.90                     |
| *H <sub>2</sub> NOH | -133.86 | 1.15                     | 0.19    | -132.90                     |
| *NH <sub>2</sub>    | -124.41 | 0.64                     | 0.08    | -123.85                     |
| *NH <sub>3</sub>    | -128.93 | 1.06                     | 0.11    | -127.98                     |

**Table S7** Computed total energies (*E*), zero-point energies ( $E_{ZPE}$ ) and entropy (*TS*) of NORR intermediates on Si site with N-end configuration of NO adsorption after including the solvation effects.

**Table S8** Computed NORR free energy changes ( $\Delta G$ ) of elementary steps for NORR

| Elementary Reactions                                                      | DFT   | DFT +<br>U | DFT   | DFT +<br>solvation |
|---------------------------------------------------------------------------|-------|------------|-------|--------------------|
|                                                                           | 3×3   | 3×3        | 4×4   | 3×3                |
| NO (g) + * $\rightarrow$ *NO                                              | -0.5  | -0.66      | -0.46 | -0.53              |
| *NO + H <sup>+</sup> + $e^- \rightarrow$ *HNO                             | -0.4  | -0.34      | -0.43 | -0.48              |
| *HNO + H <sup>+</sup> + $e^- \rightarrow$ *HNOH                           | -0.42 | -0.39      | -0.39 | -0.52              |
| *HNOH + H <sup>+</sup> + $e^- \rightarrow *H_2$ NOH                       | -0.4  | -0.36      | -0.44 | -0.56              |
| $*H_2NOH + H^+ + e^- \rightarrow *NH_2 + H_2O$                            | -2.04 | -2.04      | -2.04 | -1.72              |
| $*\mathrm{NH}_2 + \mathrm{H}^+ + \mathrm{e}^- \rightarrow *\mathrm{NH}_3$ | -0.23 | -0.21      | -0.22 | -0.68              |

on Si site along the N-alternating pathway under different calculation conditions. The unit is eV.

**Table S9** Computed total energies (*E*), zero-point energies ( $E_{ZPE}$ ) and entropy (*TS*) of NORR intermediates on pure Cu(111) surface.

| E(eV) | $E_{\rm ZPE} ({\rm eV})$ | TS (eV) | $G\left(\mathrm{eV}\right)$ |
|-------|--------------------------|---------|-----------------------------|
|       |                          |         |                             |

| *NO              | -196.20 | 0.16 | 0.13 | -196.17 |
|------------------|---------|------|------|---------|
| *NOH             | -199.63 | 0.45 | 0.16 | -199.33 |
| *N               | -189.42 | 0.08 | 0.03 | -189.37 |
| *NH              | -194.42 | 0.29 | 0.01 | -194.14 |
| *NH <sub>2</sub> | -198.61 | 0.69 | 0.08 | -197.99 |
| *NH <sub>3</sub> | -202.80 | 1.01 | 0.18 | -201.97 |
|                  |         |      |      |         |

**Table S10** Computed total energies (*E*), zero-point energies ( $E_{ZPE}$ ) and entropy (*TS*) of NORR intermediates on Si@Cu(111) surface.

|     | E(eV)   | $E_{\rm ZPE}~({\rm eV})$ | TS (eV) | $G\left(\mathrm{eV}\right)$ |
|-----|---------|--------------------------|---------|-----------------------------|
|     |         | N-alternating            |         |                             |
| *NO | -198.05 | 0.16                     | 0.19    | -198.07                     |

| *HNO                | -201.97 | 0.46     | 0.14 | -201.65 |
|---------------------|---------|----------|------|---------|
| *HNOH               | -206.14 | 0.75     | 0.26 | -205.65 |
| *H <sub>2</sub> NOH | -210.29 | 1.11     | 0.23 | -209.41 |
| *NH <sub>2</sub>    | -201.17 | 0.65     | 0.15 | -200.64 |
| *NH <sub>3</sub>    | -205.11 | 1.01     | 0.18 | -204.27 |
|                     |         | O-distal |      |         |
| *NO                 | -198.37 | 0.16     | 0.13 | -198.35 |
| *NOH                | -202.31 | 0.47     | 0.14 | -201.97 |
| *N                  | -192.60 | 0.09     | 0.03 | -192.54 |
| *NH                 | -197.28 | 0.39     | 0.04 | -196.93 |
| *NH <sub>2</sub>    | -201.17 | 0.65     | 0.15 | -200.64 |
| *NH <sub>3</sub>    | -205.11 | 1.01     | 0.18 | -204.27 |

**Table S11** Computed total energies (*E*), zero-point energies ( $E_{ZPE}$ ) and entropy (*TS*) of the intermediates for N<sub>2</sub> synthesis on Cu<sub>2</sub>Si monolayer.

| the intermediates for 142 synthesis on eu251 monorayer. |         |                          |         |                             |  |  |
|---------------------------------------------------------|---------|--------------------------|---------|-----------------------------|--|--|
|                                                         | E(eV)   | $E_{\rm ZPE}~({\rm eV})$ | TS (eV) | $G\left(\mathrm{eV}\right)$ |  |  |
| *NONO                                                   | -134.84 | 0.39                     | 0.25    | -134.70                     |  |  |
| *NONOH                                                  | -138.98 | 0.73                     | 0.29    | -138.55                     |  |  |
| *NNO                                                    | -128.62 | 0.29                     | 0.18    | -128.51                     |  |  |
| *NNOH                                                   | -132.95 | 0.59                     | 0.21    | -132.57                     |  |  |
| * + N <sub>2</sub>                                      | -124.01 | 0.15                     | 0.59    | -124.44                     |  |  |
|                                                         |         |                          |         |                             |  |  |



**Fig. S1** Variation of total energy and temperature versus the AIMD simulation time for  $Cu_2Si$  monolayer at (a) 300 K and (b) 500 K. Insets denote the top and side views of  $Cu_2Si$  structure as the AIMD simulations lasted for 10 ps.



Fig. S2 Phonon dispersion spectrum of  $Cu_2Si$  monolayer.



Fig. S3 Free energy diagram for NORR toward  $NH_3$  on Si site by DFT + U method.



Fig. S4 Free energy diagram for NORR toward  $NH_3$  on Si site using a  $4 \times 4$  Cu<sub>2</sub>Si supercell.



**Reaction Coordinates** 

Fig. S5 Free energy diagram for NORR toward NH<sub>3</sub> on Si site using implicit solvation model.