Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Design of High-Performance Antimony /

MXene Hybrid Electrodes for Sodium-Ion Batteries

Stefanie Arnold,^{1,2} Antonio Gentile,^{3,4} Yunjie Li,^{1,2} Qingsong Wang,^{1,5}

Stefano Marchionna,⁴ Riccardo Ruffo,^{3,6*} and Volker Presser^{1,2,7*}

- ¹ INM Leibniz Institute for New Materials, Campus D2.2, 66123 Saarbrücken, Germany
- ² Department of Materials Science and Engineering, Saarland University, Campus D2.266123 Saarbrücken, Germany
- ³ Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, Via Cozzi 55, 20125 Milano, Italy
- ⁴ Ricerca sul Sistema Energetico- RSE S.p.A., Via R. Rubattino 54, 20134 Milano, Italy
- ⁵ Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- ⁶ National Reference Center for Electrochemical Energy Storage (GISEL) Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy
- ⁷ Saarene Saarland Center for Energy Materials and Sustainability, Campus D4.2, 66123 Saarbrücken, Germany
- * Corresponding author's E-Mail: VP: volker.presser@leibniz-inm.de; RR: riccardo.ruffo@unimib.it

Figure S1: X-ray diffraction patterns of different Sb@Ti₃C₂T_z hybrid materials (+pure Ti₃C₂T_z and expanded Ti₃C₂T_z) by using the MXene etched with 5 mass% HF (**A**) and 30 mass% HF (**B**).

Figure S2: Particle size distribution derived from image analysis of scanning electron micrographs of 150 antimony particles synthesized via synthesis Route A (**A**) and via synthesis Route B (**B**).

Figure S3: Scanning electron micrographs of (**A**) antimony $Ti_3C_2T_z$ (5 mass% HF) hybrid with a composition of 7:3 (**B**) antimony expanded $Ti_3C_2T_z$ (5 mass% HF) hybrid with a composition of 7:3 (**C**) antimony $Ti_3C_2T_z$ (30 mass% HF) hybrid with a composition of 7:3 (**D**) antimony expanded $Ti_3C_2T_z$ (30 mass% HF) hybrid with a composition of 7:3.

Figure S4: Material characterization of the different MXenes. Scanning electron micrographs of (**A-B**) $Ti_3C_2T_z$ (5 mass% HF), (**C-D**) with TMAOH expanded $Ti_3C_2T_z$ (5 mass% HF), (**E-F**) $Ti_3C_2T_z$ (30 mass% HF), (**G-H**) with TMAOH expanded $Ti_3C_2T_z$ (30 mass% HF).

Figure S5: Material characterization of the different with TMAOH expanded MXene antimony hybrids. Scanning electron micrographs of (**A-B**) antimony expanded $Ti_3C_2T_z$ (5 mass% HF) hybrid with a composition of 6:4, (**C-D**) antimony expanded $Ti_3C_2T_z$ (5 mass% HF) hybrid with a composition of 7:3, (**E-F**) antimony expanded $Ti_3C_2T_z$ (30 mass% HF) hybrid with a composition of 6:4, (**G-H**) antimony expanded $Ti_3C_2T_z$ (30 mass% HF) hybrid with a composition of 7:3.

Figure S6: Material characterization of the different MXenes hybrids. Scanning electron micrographs of (**A-B**) antimony $Ti_3C_2T_z$ (5% mass% HF) hybrid with a composition of 6:4, (**C-D**) antimony $Ti_3C_2T_z$ (5% mass% HF) hybrid with a composition of 7:3, (**E-F**) antimony $Ti_3C_2T_z$ (30% mass% HF) hybrid with a composition of 6:4, (**G-H**) antimony $Ti_3C_2T_z$ (30% mass% HF) hybrid with a composition of 6:4.

Figure S7: Cyclic voltammograms recorded at 0.1 mV s⁻¹ in the potential range of 0.1-2.0 V vs. Na⁺/Na for (**A**) antimony Ti₃C₂T_z (5% mass% HF) hybrid with a composition of 6:4, (**B**) antimony Ti₃C₂T_z (5% mass% HF) hybrid with a composition of 7:3, (**C**) antimony expanded Ti₃C₂T_z (5% HF) hybrid with a composition of 6:4, (**D**) antimony expanded Ti₃C₂T_z (5% mass% HF) hybrid with a composition of 7:3, (**E**) v Ti₃C₂T_z (5% mass% HF), (**F**) not expanded Ti₃C₂T_z (5% mass% HF).

Figure S8: Cyclic voltammograms recorded at 0.1 mV s⁻¹ in the potential range of 0.1-2.0 V vs. Na⁺/Na for (**A**) antimony $Ti_3C_2T_z$ (30% mass% HF) hybrid with a composition of 6:4, (**B**) antimony $Ti_3C_2T_z$ (30% mass% HF) hybrid with a composition of 7:3, (**C**) antimony expanded $Ti_3C_2T_z$ (30% mass% HF) hybrid with a composition of 6:4, (**D**) antimony expanded $Ti_3C_2T_z$ (30% mass% HF) hybrid with a composition of 7:3, (**C**) antimony expanded $Ti_3C_2T_z$ (30% mass% HF) hybrid with a composition of 6:4, (**D**) antimony expanded $Ti_3C_2T_z$ (30% mass% HF), hybrid with a composition of 7:3, (**E**) expanded $Ti_3C_2T_z$ (30% mass% HF), (**F**) not expanded $Ti_3C_2T_z$ (30% mass% HF).

Figure S9: Galvanostatic charge and discharge profiles at different applied specific currents of $0.1-8 \text{ A g}^{-1}$ between 1.0 V and 3.0 V vs. Na⁺/Na of (A) Sb@A_MX_HF5(7:3), (B) Sb@B_MX_HF5(7:3), (C) Sb@A_MX_HF30(6:4), (D) Sb@B_MX_HF30(6:4), (E) Sb@A_MX_HF30(7:3), and (F) Sb@B_MX_HF30(7:3).

Figure S10: Electrochemical characterization of the non-expanded and expanded $Ti_3C_2T_z$, etched with 5 mass% HF. Galvanostatic charge and discharge profiles at rates of 0.1-8 A g⁻¹ (1.0-3.0 V vs. Na⁺/Na) of (A) MX_HF5, (B) MX_HF30, (C) A_MX_HF5, and (D) A_MX_HF30. Rate performance using galvanostatic charge/discharge cycling and Coulombic efficiency values at different rates for (E) MX_HF5 and A_MX_HF5, (F) MX_HF30 and A_MX_HF30. Galvanostatic charge/discharge cycling stability and Coulombic efficiency values at a specific current of 0.1 A g⁻¹ for (G) MX_HF5 and A_MX_HF5, (H) MX_HF30 and A_MX_HF30.

Figure S11: Galvanostatic charge/discharge cycling performance electrochemical stability with corresponding Coulombic efficiency values at a specific current of 0.1 A g^{-1} for **(A)** Sb+MX_HF5(6:4)_MM, and **(B)** Sb+MX_HF5(7:3)_MM. Cyclic voltammograms recorded at a rate of 0.1 mV s⁻¹ in the potential range of 0.1-2.0 V vs. Na⁺/Na for **(C)** Sb+MX_HF5(6:4)_MM, and **(D)** Sb+MX_HF5(7:3)_MM.

Figure S12: X-ray diffraction pattern of (**A**) pristine and post mortem Sb@B_MX_HF5(6:4) electrode (**B**) pristine and cycled Sb@A_MX_HF5(6:4) electrode. The diffraction patterns were recorded with the setup XRD-2 (see Experimental).

Figure S13: Graphical illustration and overview of initial specific capacities as well as values after 50 cycles of cycling at a specific current of 0.1 A g^{-1} of all hybrid antimony MXene hybrid materials produced in this work.