Supporting Information

For

Reactive Oxygen Species Regulation and Synergistic for Effective Water Purification through Fenton-like Catalysis on Single-Atom Cu-N Sites

Shiyu Zuo¹, Zeyu Guan¹, Fan Yang², Dongsheng Xia³, Dongya Li^{1,4*}

¹ School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073,

P.R. China.

² School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan,

430073, P.R. China.

³ Engineering Research Center Clean Production of Textile Dyeing and Printing,

Ministry of Education, Wuhan, 430073, P.R. China.

⁴ State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P. R. China.

*Corresponding author.

E-mail address: dyli@wtu.edu.cn.

This Supporting Information includes

4 Text

25 Figures

6 Table

List of Text, Figures and Table

- Text S1. Chemicals and materials.
- Text S2. Methods.
- Text S3. Experiment.
- Text S4 Material characterization.
- Text S5 Electrochemical analysis tests.
- Text S6 Calculation methods.

Fig. S1. SEM of C.

- Fig. S2. BET of C and Cu-SA.
- Fig. S3. (a) HAADF-STEM of Cu-SA; EDS of (b) Cu, (c) C and (d) N.
- Fig. S4. FT-IR of C and Cu-SA.

Fig. S5. XPS Cu 2p of Cu-SA.

- Fig. S6. XPS C 1s of C and Cu-SA.
- Fig. S7. EPR of C and Cu-SA.
- Fig. S8. EIS of C and Cu-SA.
- Fig. S9. CV of C and Cu-SA.
- Fig. S10. Adsorption of BPA in Cu-SA.

Fig. S11. Degradation of BPA in different systems (Cu-SA, ZVI, ZVC, Fe²⁺, Cu⁺).

Fig. S12. Degradation of BPA in different systems (Cu-SA/H₂O₂, Cu-SA/PDS, Cu-SA/PMS and Fe²⁺/H₂O₂).

Fig. S13. (a) Cyclic experiment of BPA degradation in Cu-SA/PMS; (b) XRD after Cu-SA

reaction; (c) XPS after Cu-SA reaction; (d) Cu²⁺ leaching of Cu-SA.

- Fig. S14. Influence of MeOH in Cu-SA/ H_2O_2 .
- Fig. S15. Influence of MeOH and NaN₃ in Cu-SA/PDS.
- Fig. S16. Influence of MeOH and NaN₃ in Cu-SA/PMS.
- Fig. S17. Oxidant consumption in Cu-SA/H₂O₂, Cu-SA/PDS and Cu-SA/PMS.
- Fig. S18. Calculated energy profiles for (a) H₂O₂, (b) PDS, (c) PMS dissociation.

- Fig. S19. HPLC-MS of BPA in Cu-SA/H₂O₂, Cu-SA/PDS and Cu-SA/PMS.
- Fig. S20. UV-Vis of BPA in Cu-SA/H₂O₂, Cu-SA/PDS and Cu-SA/PMS.
- Fig. S21. The effect of pH on the degradation of BPA.
- Fig. S22. The effect of F value.
- Fig. S23. The effect of temperature on the degradation of BPA.
- Fig. S24. The effect of oxidant concentration on the degradation of BPA.
- Fig. S25. The effect of catalyst concentration on the degradation of BPA.
- Fig. S26. The effect of BPA concentration on the degradation of BPA.
- Table. S1. The analysis conditions for pollutant.
- Table. S2. BET analysis
- Table. S3. Best fitting EXAFS data.
- Table. S4. Some comparison of the catalytic performance in similar reported.
- Table. S5. Adsorption energy of H₂O₂, PDS and PMS on Cu-SA.
- Table. S6. Intermediate products measured by UPLC-MS.

Text S1. Chemicals and materials.

Deionized water was used for the experiments. Hydrogen peroxide (H₂O₂, 30%), Sodium persulfate (PDS, Na₂S₂O₈, 98%), Peroxymonosulfate (PMS, >47%), 5,5-dimethyl-1-pyrroline N-oxide (DMPO, 97%) and 2,2,6,6-tetramethyl-4-piperidinol (TEMP, 99%) were obtained from Aladdin Reagent Co. Ethanol (EtOH, 99%), tert-butanol (TBA, 99%), furfuryl alcohol (FFA, 98%), potassium iodide (KI, 99%), Sodium dihydrogen phosphate (NaH₂PO₄, 99%), sodium chloride (NaCl, 99%), sodium carbonate (NaHCO₃, 99%), sodium carbonate (Na₂CO₃, 99%), sodium sulfate (Na₂SO₄, 99%), humic acid (90%), iron(III) chloride hexahydrate (H₁₂Cl₃FeO₆·H₂O, 99%), copper(II) acetate monohydrate (C₄H₆CuO₄·H₂O, 99.0%) , Phenol (C₆H₆O, 99%), p-Hydroxybenzoic acid (C₇H₆O₃, 99%), Bisphenol A (BPA, 99%), o-Chlorophenol (ClC₆H₄OH, 99%) and 2-Hydroxyterephthalic acid (C₈H₆O₅, 98%) were obtained from Sinopharm Chemical Reagent Co., Ltd. (China).

Text S2. Methods.

The potassium citrate was heated to 800 °C for 1 h under nitrogen atmosphere, the black powder was acid washed, and the obtained sample was C (carrier).

Mix 60 mg C, 6.7 mmol α -D-glucose and 0.3 mmol Cu(NO₃)₂·6H₂O in water. After being washed with water and dried, it was mixed with 300 mg of melamine, and then calcined in a N₂ atmosphere at 800 °C for 2 h to finally obtain Cu-SA. According to ICP analysis, the Cu loading is about 1.6 w%.

Text S3. Experiment.

The solution of catalyst, oxidant and pollutant is mixed with magnetic stirring to make it fully react. The pH value is controlled by adding 10 mmol/L phosphate buffer (PB). The experiment was repeated more than three times. Use high-performance liquid chromatography (Shimadzu LC-16) with a C18 column (150 mm \times 4.6 mm, 5 µm) to analyze the BPA concentration.

Text S4 Material characterization.

JEM ARM200F, acceleration voltage 200kV; HAADF uses a half-convergence angle of

25mrad, and a collection angle of about 85-365mrad. The X-ray absorption spectra(XAS) including X-ray absorption near-edge structure(XANES) and extended X-ray absorption fine stucture (EXAFS) of the samples at Cu K-edge (7709eV were colleted at the Singapore Synchrotron Light Source(SSLS)center, where a pair of chanel-cut Si (111) crystals was used in the monochromator. The Cu K-edge XANES data were recorded in a transmission mode.Cu foil and Cu₂O were used as references. The storage ring was working at the energy of 2.5 GeV with anaverage electron curent of below 200mA. The acquired EXAFS data were extracted and procsed acording to thestandard procedures using te ATHENA module implemented in the FEFIT sofware packages. The k3-weighted Fourier transform (FT) of x(k) in R space was obtained over herange of 0-14.0 Å-1 by applying a Besse window function. The specific surface area and pore size distribution of materials were determined on the basis of N₂ adsorption at 77 K using surface and pore analyzer (Nova 3000, Quantachrome, Boynton Beach, FL). The morphology was characterized with scanning electron microscope (SEM, S-3400 II, Hitachi, Japan), transmission electron microscopy (TEM, JEM-200CX, JEOL, Japan), and high resolution transmission electron microscope (HR-TEM, Tecnai G2 F20 S, FEI, U.S.A.). X-ray diffraction (XRD, X'TRA, ARL, Switzerland) was used to investigate the mineralogy of the catalysts with Cu K α radiation. The functional groups were characterized by Fourier transform infrared spectroscopy (FTIR, Nicolet iS5, Thermo Scientific, U.S.A.). X-ray photoelectron spectroscopy (XPS, ESCALAB-2, Great Britain) with an Al K α anode radiation as the excitation source was employed to detect the chemical states of different elements. All the binding energies were referenced to the C 1s peak at 284.8 eV. Zeta potential (ZP) of samples was measured with a Zeta voltmeter (Zeta-sizer Nano ZS90). The degradation intermediates were identified by Ultra Performance Liquid Chromatography-mass spectrometry (UPLC-MS, Waters Xevo TQ-S, USA) with BEH-C18 (100 mm \times 2.1 mm, 5 mm) column. Radicals (SO₄ · and •OH) and singlet oxygen ($^{1}O_{2}$) were detected by employing electron paramagnetic resonance (EPR, EMX-10/12, Bruker, Germany) spectroscopy with DMPO and TEMP as the spin-trapping agent, respectively.

Text S5 Electrochemical analysis tests.

The FTO loaded with powder was first prepared. Nafion® solution (5.0 wt%, 0.01 mL) and catalyst (5 mg) were mixed with ethanol (0.1 mL), then ultrasonic dispersion for 3 h to form a

suspension solution. Next, 60 µL suspension was dropped onto the surface of the FTO electrode. The electrode was vacuum dried at 60 °C for 8 h. Silver/silver chloride electrode (Ag/AgCl) and Pt wire electrode were used as reference electrode and counter electrode, respectively. Electrochemical impedance spectroscopy (EIS) was carried out at open potential in 0.5 M Na₂SO₄ solution, and the frequency was in the range from 10⁵ to 10⁻¹ Hz. Linear sweep voltammetry (LSV) was measured at the potential from 0.0-1.5 V (vs. Ag/AgCl) with a scanning rate of 50 mV/s. Chronoamperometries were carried out at the bias of 0.0 V (vs. Ag/AgCl) with 0.5 M Na₂SO₄ as supporting electrolyte.

Text S6 Calculation methods.

We used the Vienna Ab initio simulation package (VASP) ¹ based on self-consistent density functional theory ^{2, 3} to calculate the structure and electronic structure. The frozen-core projector augmented wave approach 4,5 was employed to describe the core-valence interaction. The generalized gradient approximation ⁶, in the form proposed by Perdew, Burke, and Ernzerhof ⁷, was used for the exchange-correlation functional. For all calculations, the electronic states were expanded using a plane-wave basis set with a kinetic energy cutoff of 400 eV. For structural optimization, periodic boundary conditions were applied. The SACs structure was constructed in this way as follow steps: firstly, a $6 \times 6 \times 1$ supercell of graphene with double C atoms vacancy was used as surface models. And then, a single Cu atom embedded on hollow site on graphene, and it's nearest 4 carbon atoms were replaced by 4 nitrogen atoms. The calculated bond lengths are $d_{\text{Cu-N}}=1.92$ Å, $d_{\text{C-N1}}=1.36$ Å and $d_{\text{C-N2}}=1.37$ Å. We separated the surface by a vacuum of 18 Å to meet the needs of constructing the adsorbed system structures. k-point meshes were performed a $3 \times 3 \times 1$ Monkhorst-Pack with Γ -centered method for all calculations. Geometry relaxation were considered to converge when the force on each atom was less than 0.02 eV/Å and the energy tolerance was set as 1.0×10^{-5} eV/atom to ensure accurate results. DFT-D3 correction method of Grimme was used for non-local van der Waals (vdW) interactions⁸. The energy barriers for H₂O₂, PMS, PDS splitting on surfaces were calculated with climbing-image nudged elastic band (CI-NEB) method ⁹. Structures of transition states were confirmed by vibrational frequency calculations.

A Gaussian 09 system was employed to optimized the BPA and Single-point energies were

calculated at the B3LYP/ 6-311G** level ^{10, 11}. The HOMO and LUMO was plotted using Multiwfn.

Fig. S1. SEM of C.

Fig. S2. BET of C and Cu-SA.

Fig. S3. (a) HAADF-STEM of Cu-SA; EDS of (b) Cu, (c) C and (d) N.

Fig. S4. FT-IR of C and Cu-SA.

Fig. S5. XPS Cu 2p of Cu-SA.

Fig. S6. XPS C 1s of C and Cu-SA.

Fig. S7. EPR of C and Cu-SA.

Fig. S8. EIS of C and Cu-SA.

Fig. S9. CV of C and Cu-SA.

Fig. S10. Adsorption of BPA in Cu-SA.

 $[Catalyst]_0 = 0.1 \text{ g/L}, [BPA]_0 = 0.1 \text{ mmol/L}, [PB]_0 = 10 \text{ mmol/L} \text{ and } T = 278 \text{ K}.$

Fig. S11. Degradation of BPA in different systems (Cu-SA, ZVI, ZVC, Fe²⁺, Cu⁺). [Oxidant]₀ = 0.5 mmol/L, [Catalyst]₀ = 0.1 g/L, [BPA]₀ = 0.1 mmol/L, [PB]₀ = 10 mmol/L, pH = 7.17 and T = 278 K.

Fig. S12. Degradation of BPA in different systems (Cu-SA/H₂O₂, Cu-SA/PDS, Cu-SA/PMS and Fe^{2+}/H_2O_2).

 $[Oxidant]_0 = 0.5 \text{ mmol/L}, [Catalyst]_0 = 0.1 \text{ g/L}, [PB]_0 = 10 \text{ mmol/L}, [BPA]_0 = 0.1 \text{ mmol/L} \text{ and T} = 278 \text{ K}.$

Fig. S13. (a) Cyclic experiment of BPA degradation in Cu-SA/PMS; (b) XRD after Cu-SA reaction; (c) XPS after Cu-SA reaction; (d) Cu²⁺ leaching of Cu-SA.
[Oxidant]₀ = 0.5 mmol/L, [Catalyst]₀ = 0.1 g/L, [BPA]₀ = 0.1 mmol/L and T = 278 K.

Fig. S14. Influence of MeOH in Cu-SA/H₂O₂.

 $[Oxidant]_0 = 0.5 \text{ mmol/L}, [Catalyst]_0 = 0.1 \text{ g/L}, [PB]_0 = 10 \text{ mmol/L} [BPA]_0 = 0.1 \text{ mmol/L} and T = 278 \text{ K}.$

Fig. S15. Influence of MeOH and NaN₃ in Cu-SA/PDS.

 $[Oxidant]_0 = 0.5 \text{ mmol/L}, [Catalyst]_0 = 0.1 \text{ g/L}, [BPA]_0 = 0.1 \text{ mmol/L}, [PB]_0 = 10 \text{ mmol/L} \text{ and T} = 278 \text{ K}.$

Fig. S16. Influence of MeOH and NaN₃ in Cu-SA/PMS.

 $[Oxidant]_0 = 0.5 \text{ mmol/L}, [Catalyst]_0 = 0.1 \text{ g/L}, [BPA]_0 = 0.1 \text{ mmol/L}, [PB]_0 = 10 \text{ mmol/L}, [Scavenger]_0 = 10 \text{ mmol/L} \text{ and } T = 278 \text{ K}.$

Fig. S17. Oxidant consumption in Cu-SA/H₂O₂, Cu-SA/PDS and Cu-SA/PMS. [Oxidant]₀ = 0.5 mmol/L, [Catalyst]₀ = 0.1 g/L, [BPA]₀ = 0.1 mmol/L, [PB]₀ = 10 mmol/L, pH = 7.17 and T = 278 K.

Fig. S18. Minimum energy pathway of (a) H₂O₂, (b) PDS, (c) PMS molecule splitting on surface.

Fig. S19. HPLC-MS of BPA in Cu-SA/H₂O₂, Cu-SA/PDS and Cu-SA/PMS.

Fig. S20. UV-Vis of BPA in Cu-SA/H₂O₂, Cu-SA/PDS and Cu-SA/PMS.

 $[Oxidant]_0 = 0.5 \text{ mmol/L}, [Catalyst]_0 = 0.1 \text{ g/L}, [BPA]_0 = 0.1 \text{ mmol/L}, [PB]_0 = 10 \text{ mmol/L}, pH = 7.17 \text{ and } T = 278 \text{ K}.$

Fig. S21. The effect of pH on the degradation of BPA.

 $[Oxidant]_0 = 0.5 \text{ mmol/L}, [Catalyst]_0 = 0.1 \text{ g/L}, [BPA]_0 = 0.1 \text{ mmol/L}, [PB]_0 = 10 \text{ mmol/L} \text{ and T} = 278 \text{ K}.$

Fig. S22. The effect of F value.

Fig. S23. The effect of temperature on the degradation of BPA.

 $[Oxidant]_0 = 0.5 \text{ mmol/L}, [Catalyst]_0 = 0.1 \text{ g/L}, [BPA]_0 = 0.1 \text{ mmol/L}, [PB]_0 = 10 \text{ mmol/L} \text{ and pH} = 7.17.$

Fig. S24. The effect of oxidant concentration on the degradation of BPA. $[Catalyst]_0 = 0.1 \text{ g/L}, [BPA]_0 = 0.1 \text{ mmol/L}, [PB]_0 = 10 \text{ mmol/L}, pH = 7.17 \text{ and } T = 278 \text{ K}.$

Fig. S25. The effect of catalyst concentration on the degradation of BPA.

 $[Oxidant]_0 = 0.5 \text{ mmol/L}, [BPA]_0 = 0.1 \text{ mmol/L}, [PB]_0 = 10 \text{ mmol/L}, pH = 7.17 \text{ and } T = 278 \text{ K}.$

Fig. S26. The effect of BPA concentration on the degradation of BPA.

 $[Oxidant]_0 = 0.5 \text{ mmol/L}, [Catalyst]_0 = 0.1 \text{ g/L}, [PB]_0 = 10 \text{ mmol/L}, pH = 7.17 \text{ and } T = 278 \text{ K}.$

Contaminant	Flow	λ			Domorit	
	(ml/min)	(nm)	Спзон	Н ₂ О	Kennark	
Bisphenol A	1.0	280	70	30	HPLC	

Table. S1. The analysis conditions for pollutant.

Table. S2. BET analysis

Sample	Specific surface area (m ² /g)	Pore volume (cm ³ /g)	Average pore size (nm ²)
С	992.1534	0.202302 cm ³ /g	2.26661 nm ²
Cu-SA	1,101.9968	0.159822 cm ³ /g	2.24798 nm ²

Sample	shell	Ν	R (Å)	$\sigma^2 (10^{-3} \text{\AA}^2)$	R factor
Cu foil	Cu-Cu	12	2.56	8.2	0.003
Cu-SA	Cu-N	4	1.96	5.3	0.007

Table. S3. Best fitting EXAFS data.

Catalyst	Contominant	Ovident	Ovident pH		Degradation	Ref	
Catalyst	Contaminant	Oxidant	рп	(min)	rate	Kel.	
Cu-SA/NGO		H ₂ O ₂ (20	7.0		97.3%	12	
(0.025 g/L)	Paracetamol (10 mg/L)	mmol/L)		60		12	
SA-Cr/PN-g-C3N4		H ₂ O ₂ (163			98.8%	13	
(0.2 g/L)	Bisphenol A (10 mg/L)	mmol/L)	7.0	70			
FeCo@NC-1	D. 1 14 (20 /L)	DMG (200 /I.)	<i>.</i>		99%	14	
(0.1 g/L)	Bisphenol A (20 mg/L)	PMIS (200 mg/L)	6.0	1		14	
0.5UNCu-SBA	p-hydroxybenzoic acid (20	H ₂ O ₂ (1000	4	(0)	99%	15	
(0.2 g/L)	mg/L)	mg/L)		00			
Fe-ISAs@CN	Sulfadiaging (2 mg/L)	H ₂ O ₂ (10	6.5	10	96%	16	
(0.1 g/L)	Suffactazine (2 mg/L)	mmol/L)				10	
C 5 A (0.1 -/L)	\mathbf{D} and $\mathbf{n} = 1 \mathbf{A} \left(0, 1, \mathbf{n} = \mathbf{n} \right)$	H ₂ O ₂ (0.5	91 (0/	This			
Cu-SA (0.1 g/L)	Bisphenol A (0.1 mmol/L)	mmol/L)	/.1/	I	81.0%	work	
Cu-SA (0.1 g/L)	$\mathbf{Dischard}(\mathbf{A}(0,1,\mathbf{mm},\mathbf{a})/\mathbf{I})$	PDS (0.5	PDS (0.5 7.17 1 61. mmol/L)	61 50/	This		
	Displicitor A (0.1 minor/L)	mmol/L)		I	01.570	work	
Cu-SA (0.1 g/L)	$\mathbf{Pionkonol} \mathbf{A} \left(0.1 \mathrm{mmol}^{T} \right)$	PMS (0.5	7 17	1	58.0%	This	
	Bisphenol A (0.1 mmol/L)	mmol/L)	/.1/	1		work	

Table. S4. Some comparison of the catalytic performance in similar reported.

Sample	E _{ads} (eV)
H_2O_2	-2.64
PDS	-1.02
PMS	-7.14

Table. S5. Adsorption energy of H_2O_2 , PDS and PMS on Cu-SA.

Number	m/z	Possible intermediates
BPA	228	H ₃ CCH ₃ HO OH
P1	317	но-С-СН3 -о-С-ОН
P2	181	O C C C C
Р3	158	
P4	135	но-С-СН3
P5	135	но-СР-Сн,
P6	113	H ₂ C ^{OH} OH
P7	113	но он о он

Table. S6. Intermediate products measured by UPLC-MS.

References

- 1. G. Kresse and J. Furthmüller, *Vienna: Vienna University*, 2001.
- 2. W. Kohn and L. J. Sham, *Physical review*, 1965, **140**, A1133.
- W. Kohn, A. D. Becke and R. G. Parr, *The Journal of Physical Chemistry*, 1996, 100, 12974-12980.
- 4. P. E. Blöchl, *Physical review B*, 1994, **50**, 17953.
- 5. G. Kresse and D. Joubert, *Physical review b*, 1999, **59**, 1758.
- 6. J. P. Perdew, K. Burke and M. Ernzerhof, *Physical review letters*, 1996, 77, 3865.
- 7. M. Ernzerhof and G. E. Scuseria, *The Journal of chemical physics*, 1999, **110**, 5029-5036.
- S. Grimme, J. Antony, S. Ehrlich and H. Krieg, *The Journal of chemical physics*, 2010, 132, 154104.
- 9. G. Henkelman and H. Jónsson, *Physical review letters*, 2001, **86**, 664.
- H. Li, X. Miao, J. Zhang, J. Du, S. Xu, J. Tang and Y. Zhang, *Chemical Engineering Journal*, 2020, **381**, 122680.
- 11. R. A. Gaussian09, Inc., Wallingford CT, 2009, 121, 150-166.
- Q. Wu, J. Wang, Z. Wang, Y. Xu, Z. Xing, X. Zhang, Y. Guan, G. Liao and X. Li, Journal of Materials Chemistry A, 2020, 8, 13685-13693.
- F. Chen, X. L. Wu, C. Shi, H. Lin, J. Chen, Y. Shi, S. Wang and X. Duan, Advanced Functional Materials, 2021, 31, 2007877.
- J. Yang, D. Zeng, J. Li, L. Dong, W.-J. Ong and Y. He, *Chemical Engineering Journal*, 2021, 404, 126376.
- 15. Y. Yin, W. Li, C. Xu, L. Shi, L.-C. Zhang, Z. Ao, M. Liu, M. Lu, X. Duan and S. Wang, *Environmental Science: Nano*, 2020, 7, 2595-2606.
- W. Yang, P. Hong, D. Yang, Y. Yang, Z. Wu, C. Xie, J. He, K. Zhang, L. Kong and J. Liu, *Journal of Colloid and Interface Science*, 2021, 597, 56-65.