Supporting Information

Water Oxidation with a Noble Metal-Free Photoanode
 Modified with an Organic Dye and a Molecular Cobalt Catalyst

Yong Zhu, Degao Wang, Wenjun Ni, Gagik G. Gurzadyan, Licheng Sun, Thomas J. Meyer, * and Fei Li*

Materials

All synthetic reactions were carried out under N_{2} atmosphere with standard Schlenk techniques. According to standard methods, solvents were dried and purified prior to use. 4-(di-p-tolylamino)benzaldehyde (\geq 98\%), bromotrimethylsilane ($\geq 98.0 \%$), diethyl cyanomethyl phosphonate ($\geq 98 \%$, GC), cobalt nitrate hexahydrate $\left(\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, 99 \%\right)(\geq 99.0 \%)$, pyridine $(\geq$ 99.0\%) were purchased from Aladdin. 4-Pyridylacetonitrile hydrochloride (\geq 95.0%) were purchased from J\&K chemical company. All other chemicals are commercially available. High purity water ($18.2 \mathrm{M} \Omega \cdot \mathrm{cm}$) supplied by a Milli-Q system (Millipore, Direct-Q 3 UV) was used in all experiments.

Characterization

${ }^{1} \mathrm{H}$ NMR spectra were collected at 298 K using a Bruker DRX-500 instrument. Electrospray ionization mass spectra were recorded on an LTQ Orbitrap XL Micromass spectrometer (Thermo Scientific, USA). Electrochemical measurements were taken with a CHI 760E electrochemical potentiator (Shanghai Chenhua, China). Photoluminescence spectra were analyzed with a Fluorolog FL-3-22 fluorometer from Horiba-Jobin-Yvon Ltd. equipped with a 450 W Xe lamp and two analyzing monochromators.

X-ray crystallography

Single-crystals of D1 were obtained by slow diffusion of diethyl ether in D1 DCM solutions. Intensities were collected on a Bruker SMART APEX CCD diffractometer with graphite monochromator Mo-Ka ($\lambda=0.71073 \AA$) using the SMART and SAINT programs. The structure was solved by direct methods and refined on F2 by full- matrix least-squares methods with SHELXTL version 5.1.37. All non-hydrogen atoms were refined anisotropic ally. All hydrogen atoms were set geometrically and constrained to ride on their carrier atoms. The structure has been deposited to the CCDC with the deposition number 2027522. The detailed crystal data are given in Table S1.

Table S1. Crystallographic Data for D1

Compound	CCM-1
Empirical formula	C28 H23 N3
Formula weight	$401.49 \mathrm{~g} / \mathrm{mol}$
Temperature	170 K
Crystal system	triclinic
Space group	P-1 (2)
Unit cell dimensions	$a=6.8605(3) \AA$ ¢ $\alpha=92.836{ }^{\circ}$
	$b=7.6642(3) \AA$; $\beta=93.632^{\circ}$
Volume	1074.09(8) nm ${ }^{3}$
Z	21
Density (calculated)	$1.397 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient	$0.126 \mathrm{~mm}^{-1}$
F (000)	424
Crystal size	$0.5 \times 0.5 \times 0.5 \mathrm{~mm}^{3}$
Theta range for data collection	5.404 to 65.278
Index ranges	$-9 \leq h \leq 10,-11 \leq k \leq 11,-30 \leq 1 \leq 28$
Reflections collected	25370
Independent reflections	$6792\left[\mathrm{R}_{\text {int }}=0.0585, \mathrm{R}_{\text {sigma }}=0.0748\right]$
Completeness to theta $=27.54^{\circ}$	99.5 \%
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	6792/0/127
Goodness-of-fit on F^{2}	1.091
Final R indices [$1>2$ sigma(l)]	$\mathrm{R}_{1}=0.1107, \mathrm{w}_{2}=0.2745$
R indices (all data)	$\mathrm{R}_{1}=0.1788, \mathrm{w}_{2}=0.3177$
Largest diff. peak and hole	1.03/-0.70 e. \AA

Emission spectral fitting procedure

Emission spectra of $\mathrm{TiO}_{2} \mid \mathbf{D 1}$ and $\mathrm{TiO}_{2} \mid \mathbf{D 2}$ were first converted to intensity units of quanta per second with the x-axis expressed as wavenumbers and then fit using a single-mode Franck-Condon analysis, equation S1
$I(v)=\sum_{v=0}^{10}\left\{\left(\frac{E_{0}-\hbar \hbar \omega}{E_{0}}\right)^{3}\left(S^{\nu}\right) \times \exp \left[-4 \ln (2)\left(\frac{\tilde{v}-E_{0}+\hbar \omega}{\tilde{\Delta v_{0,1 / 2}}}\right)^{2}\right]\right\}$
(Equation

S1)

In this equation, $\hbar \omega$ is the quantum vibrational energy spacing of the single acceptor mode of medium frequency, the value of $\hbar \omega$ was obtained by previously described method. ${ }^{1} \mathrm{~S}$ is the Huang-Rhys factor. The fitting was performed in MATLAB (version R2018a) with 11 vibrational levels included in the summation.

O_{2} Measurements

Faradaic efficiencies (FE) for O_{2} evolution were evaluated by the use of a previously described collector- generator (C-G) technique. The technique was carried out at room temperature by using a CHI 760E electrochemical analyzer, two working electrodes were positioned in parallel at a separation distance of 1 mm . At a constant bias of 0.6 V vs. NHE with illumination above 400 nm (100 $\mathrm{mW} \mathrm{cm}{ }^{-2}$) photoelectrochemical O_{2} generation at the generator was monitored at a fluorine-doped tin oxide (FTO) collector cathode with a pre-established collection efficiency of 70%. The FE for O_{2} formation was calculated from current-time plots by using equation S2. In this equation, $Q_{\text {Coll }}$ is the integrated charge passed at the collector electrode and $Q_{G e n}$ the total charge passed at the generator electrode.
$F E(\%)=\frac{Q_{\text {Coll }} / Q_{\text {Gen }}}{70 \%} \times 100 \%$
(Equation S2)

Table S2. Time coefficients and relative amplitudes of TR-PL decay traces in
Figure 2

Sample	$\tau_{1}, \mathrm{~ns}$	$\mathrm{~A}_{1}$	$\tau_{2}, \mathrm{~ns}$	$\mathrm{~A}_{2}$	$\tau_{3}, \mathrm{~ns}$	$\mathrm{~A}_{3}$	$\langle\tau\rangle{ }_{\mathrm{av}}{ }^{\mathrm{a})}, \mathrm{ns}$
$\mathrm{Al}_{2} \mathrm{O}_{3} \mid \mathrm{D} 1$	0.13	0.66	0.59	0.28	2.4	0.06	0.39
$\mathrm{TiO}_{2} \mid \mathrm{D} 1$	0.01	0.71	0.11	0.27	0.48	0.04	0.056
$\mathrm{Al}_{2} \mathrm{O}_{3} \mid \mathrm{D} 2$	0.16	0.60	0.64	0.37	2.0	0.04	0.40
$\mathrm{TiO}_{2} \mid \mathrm{D} 2$	0.02	0.92	0.13	0.08	0.75	0.01	0.04

a) The values of $\langle\tau\rangle_{\mathrm{av}}$ were determined with $\langle\tau\rangle_{\mathrm{av}}=A_{1} \tau_{1}+A_{2} \tau_{2}+A_{3} \tau_{3}$.

Fig.S1 ${ }^{1} \mathrm{H}$ NMR spectrum of complex $\mathbf{D 1}$ in CDCl_{3}.

Fig. S2 ESI-MS spectrum of complex D1 in $\mathrm{CH}_{3} \mathrm{OH}$.

Fig. $\mathbf{S 3}{ }^{1} \mathrm{H}$ NMR spectrum of complex $\mathbf{D} 2$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Fig S4 ESI-MS spectrum of complex D2 in $\mathrm{CH}_{3} \mathrm{OH}$.

Fig S5 ${ }^{1} \mathrm{H}$ NMR spectrum of complex CoF in CDCl_{3}.

Fig. $\mathbf{S 6}$ ESI-MS spectrum of complex $\mathbf{C o F}$ in $\mathrm{CH}_{3} \mathrm{OH}$.

Fig. S7 Normalized UV-Vis absorption spectra for D1 (red) and D2 (green) in THF.

Fig. S8 Cyclic voltammograms for D1 (a) and D2 (b) on TiO_{2} in acetonitrile with $0.1 \mathrm{M} \mathrm{TBAPF}_{6}$ and a scan rate of $50 \mathrm{mV} \mathrm{s}{ }^{-1}$ (calibrated with $\mathrm{Fc} / \mathrm{Fc}^{+}$as an external reference and converted to NHE by addition of 0.63 V).

(b)

Fig. S9 Emission spectra of D1 (a) and D2 on TiO_{2} (b) immersed in pH 7 phosphate buffer and fitting thereof.

Fig. S10 Transient absorption difference spectra following 532 nm pulsed laser excitation of $\mathrm{TiO}_{2} \mid \mathbf{D 1}$ (a) and D2 (b) in pH 7 phosphate buffer from 10 to 200 $\mu \mathrm{s}$.

Fig.S11 Normalized transient absorption time traces at 700 nm comparing on $\mathrm{TiO}_{2} \mid \mathbf{D 1}$ (red) and on $\mathrm{TiO}_{2} \mid \mathbf{D} 1 \mathbf{C o F}$ (green), at a constant bias of 0.4 V vs. NHE immersed in pH 7 phosphate buffer.

Fig.S12 Wettability of $\mathrm{TiO}_{2} \mid \mathbf{D 1}$ surface (a); Wettability of $\mathrm{TiO}_{2} \mid \mathbf{D 1}$ CoF surface (b).

Fig.S13 Current density and charge passed from a collector-generator cell, $\mathrm{TiO}_{2} \mid \mathbf{D 1}$ CoF, pH 7 phosphate buffer ($0.1 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4} / \mathrm{NaH}_{2} \mathrm{PO}_{4}, 0.4 \mathrm{M} \mathrm{NaClO} 4$) under $\sim 100 \mathrm{~mW} \mathrm{~cm}{ }^{-2}$ white light (< 400nm) illumination for 1000 s with an applied bias of 0.6 V vs. NHE. The solid traces show photocurrents, and the dashed lines show the charge passed for the generator (red) and collector (blue) electrodes.

Fig. S14 Current density-time traces for $\mathrm{TiO}_{2} \mid$ RuP, CoF with illumination above 400 nm at $100 \mathrm{~mW} \mathrm{~cm}^{-2}$ in a pH 70.1 M phosphate buffer containing 0.5 M NaClO_{4} at a constant bias of 0.6 V vs. NHE .

The calculated structures

D1

C	-3.14810900	-1.23316300	-0.00384900
C	-2.88426100	-2.29456800	0.86564000
C	-3.69993200	-3.41945200	0.85857100
C	-4.80461400	-3.51140900	0.00835900
C	-5.06634300	-2.43462400	-0.84212200
C	-4.24863300	-1.31145200	-0.86003900
C	-2.96299000	1.20130200	-0.01605800
C	-2.53168900	2.20261700	-0.89010000
C	-3.16844100	3.43706200	-0.90192600
C	-4.25716900	3.70191200	-0.06700900
C	-4.68841300	2.68497300	0.78749300

C	-4.04910000	1.45165800	0.82479200
N	-2.32761100	-0.07161700	-0.00014500
C	-0.93456200	-0.17679700	-0.00756800
C	-0.13389400	0.84049300	0.54468900
C	1.24499000	0.74954000	0.53007800
C	1.89405500	-0.36630600	-0.03061400
C	1.08281700	-1.38648700	-0.55713100
C	-0.29671900	-1.30086400	-0.55946300
C	-5.67269000	-4.74291500	-0.00718600
C	-4.92745100	5.05131600	-0.07256400
C	3.33386200	-0.55735300	-0.09630300
C	4.36220000	0.29425600	0.13541200
C	5.78227200	-0.11928100	0.02029400
C	6.18121200	-1.44981400	0.18299500
C	7.52365200	-1.77546600	0.03164100
N	8.48188300	-0.89041100	-0.25102500
C	8.09813600	0.38029700	-0.38444700
C	6.78336300	0.81554400	-0.25752500
C	4.15138800	1.68050500	0.45026500
N	4.03417500	2.80763200	0.69276900
H	-2.03911400	-2.22934200	1.54393100
H	-3.48344200	-4.23662200	1.54152500
H	-5.92221100	-2.47889500	-1.51031800
H	-4.46105300	-0.48290700	-1.52831400
H	-1.69660000	2.00637800	-1.55538100
H	-2.82161400	4.20664100	-1.58630600
H	-5.53530500	2.86404400	1.44442400
H	-4.39113300	0.67105600	1.49704700
H	-0.60921600	1.70329000	0.99733300
H	1.81708600	1.54973600	0.98268200
H	1.55457000	-2.26223500	-0.99518800
H	-0.89113800	-2.09721600	-0.99222200
H	-5.67656100	-5.23655400	0.96756500
H	-6.70451800	-4.49660200	-0.26874200
H	-5.31046300	-5.46860300	-0.74294900
H	-4.90235700	5.50134100	-1.06804500
H	-5.97101400	4.97638900	0.24184800
H	-4.42418900	5.74106700	0.61299800
H	3.62843500	-1.55472300	-0.41753900
H	5.46944600	-2.22188200	0.45381000
H	7.84651200	-2.80649700	0.15638800
H	8.88501500	1.09705400	-0.60688800
H	6.54209800	1.86672200	-0.37678800

D2			
C	3.01847000	-1.18798300	-0.01930000
C	2.76319400	-2.23446500	-0.90633800
C	3.60563700	-3.34108500	-0.93802800
C	4.72711000	-3.42389700	-0.11202700
C	4.97832600	-2.36001500	0.76037000
C	4.13638000	-1.25823700	0.81692000
C	2.78337300	1.23988800	0.04033200
C	2.37194200	2.21070000	0.95692300
C	2.98782700	3.45572000	0.97394600
C	4.03585700	3.76024200	0.10137900
C	4.44830200	2.77273900	-0.79600500
C	3.82909700	1.52934900	-0.83777200
N	2.17121500	-0.04520800	0.02035200
C	0.78369500	-0.17937500	0.05967700
C	-0.05130500	0.84308000	-0.43322500
C	-1.42603600	0.71922900	-0.39255500
C	-2.03497600	-0.43365900	0.13857500
C	-1.19224200	-1.45035000	0.62114300
C	0.18407100	-1.33587600	0.59002200
C	5.64585100	-4.61767000	-0.15063000
C	4.68311400	5.12079200	0.11316000
C	-3.46465200	-0.65766800	0.22685300
C	-4.51439400	0.12351000	-0.13038900
P	-6.15913900	-0.52681600	0.16514700
0	-6.15928200	-1.84447700	0.82856500
0	-6.98198100	0.60284800	0.97425600
0	-6.81793500	-0.38871300	-1.28617900
C	-4.42264100	1.42780000	-0.70677800
N	-4.38454400	2.49042200	-1.16850700
H	1.90235200	-2.17712700	-1.56533000
H	3.39316000	-4.14981000	-1.63175800
H	5.84510700	-2.40111300	1.41495500
H	4.33837900	-0.44070400	1.50184700
H	1.56895300	1.98229100	1.65091800
H	2.65757500	4.20190100	1.69161500
H	5.26394400	2.98320700	-1.48244100
H	4.15560500	0.77114200	-1.54261300
H	0.39497100	1.73396900	-0.85978200
H	-2.02927600	1.52495400	-0.79307700
H	-1.63751300	-2.34731000	1.04315700
H	0.80641600	-2.13168200	0.98229200
H	5.32577100	-5.33894600	-0.90541200
H	6.67186000	-4.31784500	-0.38348800

H	5.66700500	-5.12915000	0.81648000
H	4.68115500	5.55104600	1.11761200
H	5.71749800	5.07021700	-0.23462700
H	4.14717800	5.81431800	-0.54315300
H	-3.75389100	-1.61794800	0.65387900
H	-7.03655000	0.37268500	1.91125500
H	-7.78173200	-0.46224200	-1.27310900

references

1 M. S. Eberhart, D. Wang, R. N. Sampaio, S. L. Marquard, B. Shan, M. K. Brennaman, G. J. Meyer, C. Dares and T. J. Meyer, J. Am. Chem. Soc., 2017, 139, 16248-16255.

