# Rationalising the Multivariate Modulation of MUV-10 for the Defect-Introduction of Multiple Functionalised Modulators

# **Table of contents**

| S.1. General Experimental Remarks                                                                         |
|-----------------------------------------------------------------------------------------------------------|
| S.2. Materials and Synthesis                                                                              |
| S.3. Characterisation of MUV-10-Iso-X4                                                                    |
| S.3.1 Powder X-Ray Diffraction (PXRD)4                                                                    |
| S.3.2 Proton Nuclear Magnetic Resonance ( <sup>1</sup> HNMR)12                                            |
| S.3.2.A Proton Nuclear Magnetic Resonance ( <sup>1</sup> HNMR) of NO <sub>2</sub> @MOD13                  |
| S.3.2.B Proton Nuclear Magnetic Resonance ( <sup>1</sup> HNMR) of F@MOD15                                 |
| S.3.2.C Proton Nuclear Magnetic Resonance ( <sup>1</sup> HNMR) of OH@MOD17                                |
| S.3.2.D Proton Nuclear Magnetic Resonance ( <sup>1</sup> HNMR) of tBu@MOD19                               |
| S.3.2.e Proton Nuclear Magnetic Resonance ( <sup>1</sup> HNMR) of NH <sub>2</sub> @MOD21                  |
| S.3.2.f Proton Nuclear Magnetic Resonance ( <sup>1</sup> HNMR) of tri-, tetra- and penta-modulated MOFs23 |
| S.3.3 Fourier transformed Infra-Red (FT-IR)25                                                             |
| S.3.4 Scanning Electron Microscopy (SEM)30                                                                |
| S.3.4.A Scanning Electron Microscopy Images and single point energy-dispersive X-Ray analysis (EDX)       |
| S.3.4.B Energy-dispersive X-Ray analysis (EDX) mapping                                                    |
| S.3.5 Thermogravimetric analysis (TGA)40                                                                  |
| S.3.6 Nitrogen Adsorption and desorption measurements53                                                   |
| S.4. Catalytic activity of MTVM MOFs68                                                                    |
| S.5. References                                                                                           |

## S.1. General Experimental Remarks

**Powder X-Ray Diffraction (PXRD):**PXRD patterns were collected in a PANalyticalX'Pert PRO diffractometer using copper radiation (Cu K $\alpha$  = 1.5418 Å) with an X'Celerator detector, operating at 40 mA and 45 kV. Profiles were collected in the 3° < 20 < 40° range with a step size of 0.017°. (University of Valencia)

**Thermogravimetric Analysis (TGA):** were carried out with a Mettler Toledo TGA/SDTA 851 apparatus between 25 and 800 °C under ambient conditions (10  $^{\circ}C\cdot min^{-1}$ scan rate and an air flow of 9 mL·min-1). (University of Valencia)

**Nuclear Magnetic Resonance Spectroscopy (NMR):** NMR spectra were recorded on either a Bruker AVIII 300 MHz spectrometer and referenced to residual solvent peaks. (University of Valencia)

**Gas Uptake:** N2 adsorption isotherms were carried out at 77 K on a with a Micromeritics 3Flex gas sorption analyser. Samples were degassed under vacuum at 120 °C for 24 h in a Multisorb station prior to analysis. BET surface areas, micropore surface areas and external surface areas were calculated from the isotherms using the MicroActive operating software. The pore size distributions were calculated using NLDFT oxide surface pore model within the MicroActive software, with no regularisation, whereas the pillared clay model was used for the tri, tetra and penta-modulated MOFs, as the oxide surface pore model as providing higher errors due to the lost of the type I isotherm (University of Valencia)

Scanning Electron Microscopy (SEM) and single point energy-dispersive X-Ray analysis (EDX): particle morphologies, dimensions and point energy-dispersive X-Ray analysis were studied with a Hitachi S-4800 scanning electron microscope at an accelerating voltage of 20 kV. (University of Valencia)

**Energy-dispersive X-Ray analysis (EDX) mapping:** the mapping of different elements (Ti, Ca, C, O, N, F) was studied using a SCIOS 2 field emission scanning electron microscope with focused ion beam at an accelerating voltage of 20 kV. (University of Valencia)

**Fourier Transform Infrared Spectroscopy:** IR spectra of solids were collected using a Shimadzu Fourier Transform Infrared Spectrometer, FTIR-8400S, fitted with a Diamond ATR unit. (University Valencia)

# S.2. Materials and Synthesis

All reagents unless otherwise stated were obtained from commercial sources and were used without further purification.

#### General remarks

For all modulated syntheses a mixture of solvents (2.2 mL of AcOH per 9.6 mL of DMF) was prepared in function of the number of reactions to perform (11.8 mL per reaction). This pre-made solvent mixture was used to separately dissolve the different synthetic components as further explained during this section.

In all syntheses the jars were placed in an oven at room temperature and heated to 120°C with 2°C/min ramp. The temperature was maintained during 24 hours and cooled down to room temperature with 0.4°C/min ramp. The resultant powder was collected by centrifugation (5000 rpm, 5 min) and washed with DMF (X2) and MeOH (x3) through dispersion-centrifugation cycles. The samples were dried under vacuum overnight and further activated by sohxlet with boiling MeOH during approximately 24 hours. The samples were further dried under vacuum for 24 hours prior to characterization.

**Procedure MUV-10-Iso-x%:** In 25 mL pyrex jars, CaCl<sub>2</sub> (1 equivalent) was dissolved in 2 mL of solvent mixture. In a separate vial 1.5 equivalents of btc compared to Ti and Ca were dissolved in 9.8 mL of solvent mixture together with the modulators (1 equivalent compared to the linker of each modulator). Both solutions were mixed in in 25 mL pyrex jars followed by slow Ti(IV) isopropoxide addition (1 equivalent) and gentle stirring.

| CaCl <sub>2</sub> | btc      | Ti(IV) isopropoxide |
|-------------------|----------|---------------------|
| 0.6 mmol          | 0.9 mmol | 0.6 mmol            |
| 66.5mg            | 189.3mg  | 177.5µL             |

 Table S1: Tabulated synthetic conditions.

# S.3. Characterisation of MUV-10-Iso-X



# S.3.1 Powder X-Ray Diffraction (PXRD)

Figure S1: PXRD patterns of NO<sub>2</sub>@MOD compared to unmodulated MUV-10.



Figure S2: PXRD patterns of F@MOD compared to unmodulated MUV-10.



Figure S3: PXRD patterns of OH@MOD compared to unmodulated MUV-10.



Figure S4: PXRD patterns of tBu@MOD compared to unmodulated MUV-10.



Figure S5: PXRD patterns of  $NH_2@MOD$  compared to simulated MUV-10.



Figure S6: PXRD patterns of di-modulated MOFs compared to unmodulated MUV-10.



**Figure S7**: Amplified PXRD patterns of di-modulated MOFs compared to unmodulated MUV-10. The legend from figure S6 applies to this figure.



**Figure S8:** PXRD patterns of multi-modulated MOFs compared to unmodulated MUV-10.



**Figure S9:** Amplification of PXRD patterns of multi-modulated MOFs compared to unmodulated MUV-10.



**Figure S10:** Amplification of PXRD patterns of multi-modulated MOFs compared to unmodulated MUV-10.



**Figure S11:** Relative peak intensity of the MTVM MOFs compared to the unmodulated MOF, analysed as the intensity of the peak divided by the intensity of all the peas.



**Figure S12:** Relative peak intensity of the MTVM MOFs compared to the unmodulated MOF, analysed as the intensity of the <111> reflectin band divided by the intensity of the <111> relection band.

#### S.3.2 Proton Nuclear Magnetic Resonance (<sup>1</sup>HNMR)

Iso-X was present in the <sup>1</sup>HNMR profiles alongside with formic acid coming from the decomposition of DMF during synthesis. Incorporation of modulator and formic acid is

expressed as the **molar ratio** (R<sub>mod</sub>,) between modulator and btc,  $\frac{Rmod = \frac{Mod}{btc}}{Mod + btc}$  and as the **molar percent** of modulator (mol%) compared to btc, mol%  $= \frac{Mod}{Mod + btc} * 100$ , while the **total modulator percent** (total mod%) is calculated taking into account modulator, total mod%  $= \frac{Mod1 + mod2 + mod3...}{Mod1 + mod2, mod3... + btc} * 100$ 

The benzene tricarboxylate linker appears as a singlet at *ca.* 8.67 ppm (3H). The singlet that corresponds to 1 H at *ca.* 7.9 ppm is attributed to DMF (\*grey in figures), while the singlet at *ca.* 8.2 ppm is attributed to formic acid (1H) comping from the decomposition of DMF during synthesis,<sup>[1]</sup> which in most cases is insignificant during this study.

For the Iso-F modulator, the triplet at *ca*. 8.32 ppm corresponds to 1H, while the doublets of doublets at ca. 7.93 ppm correspond to 2H.

For the  $Iso-NO_2$  modulator, the triplet at *ca*. 8.77 ppm corresponds to 1H, while the doublet at *ca*. 8.80 corresponds to 2H.

For the Iso-OH modulator, the triplet at *ca.* 7.97 correspond to 1H, while the doublet at *ca.* 7.58 corresponds to 2H

For the Iso-tBu modulator, the triplet at *ca*. 8.34 ppm corresponds to 1H, while the doublet at *ca*. 8.19 ppm corresponds to 2 H.

For the  $Iso-NH_2$  modulator, the use of deuterated acid results in the amino group protonation leading to the appearance of two identical species. Thus, the triplets at *ca*. 8.51 and 8.17 ppm correspond to 1H, while the doublets at *ca*. 8.46 and 8.21 ppm correspond to 2 H.

Please note that minor shifting of these signals can be observed due to the use of deuterated sulphuric acid to digest the MOFs for <sup>1</sup>HNMR analysis.

#### S.3.2.A Proton Nuclear Magnetic Resonance (<sup>1</sup>HNMR) of NO<sub>2</sub>@MOD

**Table S2:** Tabulated data extracted from acid digested <sup>1</sup>HNMR of NO<sub>2</sub>@MOD MOFs in mol%, showing modulator and total modulator content increasing with the addition of

| NO₂@MOD         | MOL F  | MOL NO <sub>2</sub> | MOL NH <sub>2</sub> | MOL tBu | MOL OH | MOL Total |
|-----------------|--------|---------------------|---------------------|---------|--------|-----------|
| F               | 12.993 | 22.820              | 0.000               | 0.000   | 0.000  | 30.796    |
| tBu             | 0.000  | 19.084              | 0.000               | 8.817   | 0.000  | 24.956    |
| ОН              | 0.000  | 18.809              | 0.000               | 0.000   | 2.264  | 20.308    |
| NH <sub>2</sub> | 0.000  | 15.432              | 2.491               | 0.000   | 0.000  | 17.221    |

modulator, whereas fa incorporation seems to be constant.

**Table S3:** Tabulated data extracted from acid digested <sup>1</sup>HNMR of NO<sub>2</sub>@MOD MOFs in molar ratio, showing modulator and total modulator content increasing with the addition of modulator, whereas fa incorporation seems to be constant.

| NO <sub>2</sub> @MOD | RF    | R NO <sub>2</sub> | R NH <sub>2</sub> | R tBu | ROH   | R Total |
|----------------------|-------|-------------------|-------------------|-------|-------|---------|
| F                    | 0.149 | 0.296             | 0.000             | 0.000 | 0.000 | 0.445   |
| tBu                  | 0.000 | 0.236             | 0.000             | 0.097 | 0.000 | 0.333   |
| OH                   | 0.000 | 0.232             | 0.000             | 0.000 | 0.023 | 0.255   |
| NH <sub>2</sub>      | 0.000 | 0.182             | 0.026             | 0.000 | 0.000 | 0.208   |



**Figure S13:** Representation of the acid-digested <sup>1</sup>HNMR profiles of the NO<sub>2</sub>@MOD MOFs.



Figure S14: Modulator incorporation in molar percent for the NO<sub>2</sub>@MOD MOFs.



Figure S15: Modulator incorporation in molar ratio for the NO<sub>2</sub>@MOD MOFs.

#### S.3.2.B Proton Nuclear Magnetic Resonance (<sup>1</sup>HNMR) of F@MOD

**Table S4:** Tabulated data extracted from acid digested <sup>1</sup>HNMR of F@MOD MOFs in mol%, showing modulator and total modulator content increasing with the addition of

| F@MOD           | MOL F  | MOL NO <sub>2</sub> | MOL NH <sub>2</sub> | MOL tBu | MOL OH | MOL Total |
|-----------------|--------|---------------------|---------------------|---------|--------|-----------|
| NO <sub>2</sub> | 12.993 | 22.820              | 0.000               | 0.000   | 0.000  | 30.796    |
| tBu             | 11.304 | 0.000               | 0.000               | 8.458   | 0.000  | 18.022    |
| ОН              | 10.428 | 0.000               | 0.000               | 0.000   | 6.833  | 15.949    |
| NH <sub>2</sub> | 10.334 | 0.000               | 5.449               | 0.000   | 0.000  | 14.740    |

modulator, whereas fa incorporation seems to be constant.

**Table S5:** Tabulated data extracted from acid digested <sup>1</sup>HNMR of F@MOD MOFs in molar ratio, showing modulator and total modulator content increasing with the addition of modulator, whereas fa incorporation seems to be constant.

| F@MOD           | R F   | R NO <sub>2</sub> | R NH <sub>2</sub> | R tBu | ROH   | R Total |
|-----------------|-------|-------------------|-------------------|-------|-------|---------|
| NO <sub>2</sub> | 0.149 | 0.296             | 0.000             | 0.000 | 0.000 | 0.445   |
| tBu             | 0.127 | 0.000             | 0.000             | 0.092 | 0.000 | 0.220   |
| OH              | 0.116 | 0.000             | 0.000             | 0.000 | 0.073 | 0.190   |
| NH <sub>2</sub> | 0.115 | 0.000             | 0.058             | 0.000 | 0.000 | 0.173   |



**Figure S16:** Representation of the acid-digested <sup>1</sup>HNMR profiles of the F@MOD MOFs.



Figure S17: Modulator incorporation in molar percent for the F@MOD MOFs.



Figure S18: Modulator incorporation in molar ratio for the F@MOD MOFs.

## S.3.2.C Proton Nuclear Magnetic Resonance (<sup>1</sup>HNMR) of OH@MOD

**Table S6:** Tabulated data extracted from acid digested <sup>1</sup>HNMR of OH@MOD MOFs in mol%, showing modulator and total modulator content increasing with the addition of modulator, whereas fa incorporation seems to be constant.

| OH@MOD          | MOL F  | MOL NO <sub>2</sub> | MOL NH <sub>2</sub> | MOL tBu | MOLOH | MOL Total |
|-----------------|--------|---------------------|---------------------|---------|-------|-----------|
| NO <sub>2</sub> | 0.000  | 18.809              | 0.000               | 0.000   | 2.264 | 20.308    |
| F               | 10.428 | 0.000               | 0.000               | 0.000   | 6.833 | 15.949    |
| tBu             | 0.000  | 0.000               | 0.000               | 3.378   | 4.343 | 7.439     |
| NH <sub>2</sub> | 0.000  | 0.000               | 4.288               | 0.000   | 7.532 | 11.210    |

**Table S7:** Tabulated data extracted from acid digested <sup>1</sup>HNMR of OH@MOD MOFs in molar ratio, showing modulator and total modulator content increasing with the addition of modulator, whereas fa incorporation seems to be constant.

| OH@MOD          | RF    | R NO <sub>2</sub> | R NH <sub>2</sub> | R tBu | ROH   | R Total |
|-----------------|-------|-------------------|-------------------|-------|-------|---------|
| NO <sub>2</sub> | 0.000 | 0.232             | 0.000             | 0.000 | 0.023 | 0.255   |
| F               | 0.116 | 0.000             | 0.000             | 0.000 | 0.073 | 0.190   |
| tBu             | 0.000 | 0.000             | 0.000             | 0.035 | 0.045 | 0.080   |
| NH <sub>2</sub> | 0.000 | 0.000             | 0.045             | 0.000 | 0.081 | 0.126   |



**Figure S19:** Representation of the acid-digested <sup>1</sup>HNMR profiles of the OH@MOD MOFs.



Figure S20: Modulator incorporation in molar percent for the OH@MOD MOFs.



Figure S21: Modulator incorporation in molar ratio for the OH@MOD MOFs.

## S.3.2.D Proton Nuclear Magnetic Resonance (<sup>1</sup>HNMR) of tBu@MOD

**Table S8:** Tabulated data extracted from acid digested <sup>1</sup>HNMR of tBu@MOD MOFs in mol%, showing modulator and total modulator content increasing with the addition of modulator, whereas fa incorporation seems to be constant.

| tBu@MOD         | MOL F  | MOL NO <sub>2</sub> | MOL NH <sub>2</sub> | MOL tBu | MOL OH | MOL Total |
|-----------------|--------|---------------------|---------------------|---------|--------|-----------|
| NO <sub>2</sub> | 0.000  | 19.084              | 0.000               | 8.817   | 0.000  | 24.956    |
| F               | 11.304 | 0.000               | 0.000               | 8.458   | 0.000  | 18.022    |
| ОН              | 0.000  | 0.000               | 0.000               | 3.378   | 4.343  | 7.439     |
| NH <sub>2</sub> | 0.000  | 0.000               | 4.242               | 7.212   | 0.000  | 10.875    |

**Table S9:** Tabulated data extracted from acid digested <sup>1</sup>HNMR of tBu@MOD MOFs in molar percent, showing modulator and total modulator content increasing with the addition of modulator, whereas fa incorporation seems to be constant.

| tBu@MOD         | RF    | R NO <sub>2</sub> | R NH <sub>2</sub> | R tBu | ROH   | R Total |
|-----------------|-------|-------------------|-------------------|-------|-------|---------|
| NO <sub>2</sub> | 0.000 | 0.236             | 0.000             | 0.097 | 0.000 | 0.333   |
| F               | 0.127 | 0.000             | 0.000             | 0.092 | 0.000 | 0.220   |
| OH              | 0.000 | 0.000             | 0.000             | 0.035 | 0.045 | 0.080   |
| NH <sub>2</sub> | 0.000 | 0.000             | 0.044             | 0.078 | 0.000 | 0.122   |



Figure S22: Representation of the acid-digested <sup>1</sup>HNMR profiles of the tBu@MOD MOFs.



Figure S23: Modulator incorporation in molar percent for the tBu@MOD MOFs.



Figure S24: Modulator incorporation in molar ratio for the tBu@MOD MOFs.

#### S.3.2.e Proton Nuclear Magnetic Resonance (<sup>1</sup>HNMR) of NH<sub>2</sub>@MOD

**Table S10:** Tabulated data extracted from acid digested <sup>1</sup>HNMR of  $NH_2@MOD$  MOFs in mol%, showing modulator and total modulator content increasing with the addition of modulator, whereas fa incorporation seems to be constant.

| NH₂@MOD         | MOL F  | MOL NO <sub>2</sub> | MOL NH <sub>2</sub> | MOL tBu | MOL OH | MOL Total |
|-----------------|--------|---------------------|---------------------|---------|--------|-----------|
| NO <sub>2</sub> | 0.000  | 15.432              | 2.491               | 0.000   | 0.000  | 17.221    |
| F               | 10.334 | 0.000               | 5.449               | 0.000   | 0.000  | 14.740    |
| tBu             | 0.000  | 0.000               | 4.288               | 0.000   | 7.532  | 11.210    |
| OH              | 0.000  | 0.000               | 4.242               | 7.212   | 0.000  | 10.875    |

**Table S11:** Tabulated data extracted from acid digested <sup>1</sup>HNMR of NH<sub>2</sub>@MOD MOFs in molar ratio, showing modulator and total modulator content increasing with the addition of modulator, whereas fa incorporation seems to be constant.

| NH <sub>2</sub> @MOD | R F   | R NO <sub>2</sub> | R NH <sub>2</sub> | R tBu | ROH   | R Total |
|----------------------|-------|-------------------|-------------------|-------|-------|---------|
| NO <sub>2</sub>      | 0.000 | 0.182             | 0.026             | 0.000 | 0.000 | 0.208   |

| F   | 0.115 | 0.000 | 0.058 | 0.000 | 0.000 | 0.173 |
|-----|-------|-------|-------|-------|-------|-------|
| tBu | 0.000 | 0.000 | 0.044 | 0.078 | 0.000 | 0.122 |
| OH  | 0.000 | 0.000 | 0.045 | 0.000 | 0.081 | 0.126 |



Figure S25: Representation of the acid-digested  $^{1}$ HNMR profiles of the NH<sub>2</sub>@MOD MOFs.



Figure S26: Modulator incorporation in molar percent for the NH<sub>2</sub>@MOD MOFs.



Figure S27: Modulator incorporation in molar ratio for the NH<sub>2</sub>@MOD MOFs.

#### S.3.2.f Proton Nuclear Magnetic Resonance (<sup>1</sup>HNMR) of tri-, tetraand penta-modulated MOFs

**Table S12:** Tabulated data extracted from acid digested <sup>1</sup>HNMR of MTVM MOFs in mol%, showing modulator and total modulator content increasing with the addition of modulator, whereas fa incorporation seems to be constant.

| mod@MOD                                    | MOL F  | MOL NO <sub>2</sub> | MOL NH <sub>2</sub> | R tBu | MOL OH | MOL Total |
|--------------------------------------------|--------|---------------------|---------------------|-------|--------|-----------|
| F@NO <sub>2</sub> @OH (0.5)                | 5.466  | 11.058              | 0                   | 0     | 1.817  | 16.712    |
| F@NO <sub>2</sub> @OH (1)                  | 10.438 | 20.037              | 0                   | 0     | 1.606  | 27.717    |
| F@NO <sub>2</sub> @OH@NH <sub>2</sub>      | 7.773  | 16.713              | 1.774               | 0.000 | 1.967  | 24.419    |
| F@NO <sub>2</sub> @OH@NH <sub>2</sub> @tBu | 8.205  | 15.699              | 3.417               | 4.956 | 2.541  | 28.016    |

**Table S13:** Tabulated data extracted from acid digested <sup>1</sup>HNMR of MTVM MOFs MOFs in molar ratio, showing modulator and total modulator content increasing with the addition of modulator, whereas fa incorporation seems to be constant.

| mod@MOD                                    | RF    | R NO <sub>2</sub> | R NH <sub>2</sub> | R tBu | R OH  | R Total |
|--------------------------------------------|-------|-------------------|-------------------|-------|-------|---------|
| F@NO2@OH (0.5)                             | 0.058 | 0.124             | 0                 | 0     | 0.019 | 0.201   |
| F@NO2@OH (1)                               | 0.117 | 0.251             | 0                 | 0     | 0.016 | 0.383   |
| F@NO <sub>2</sub> @OH@NH <sub>2</sub>      | 0.084 | 0.201             | 0.018             | 0.000 | 0.020 | 0.323   |
| F@NO <sub>2</sub> @OH@NH <sub>2</sub> @tBu | 0.089 | 0.186             | 0.035             | 0.052 | 0.026 | 0.389   |



Figure S28: Modulator incorporation in molar percent for the multi-modulated MOFs.



Figure S29: Modulator incorporation in molar ratio for the multi-modulated MOFs.









**Figure S31:** Amplification of the raw FT-IR profiles of NO<sub>2</sub>@MOD MUV-10 compared to pristine MUV-10.



Figure S32: Raw FT-IR profiles of F@MOD MUV-10 compared to pristine MUV-10.



**Figure S33:** Amplification of the raw FT-IR profiles of F@MOD MUV-10 compared to pristine MUV-10.



Figure S34: Raw FT-IR profiles of OH@MOD MUV-10 compared to pristine MUV-10.



**Figure S35:** Amplification of the raw FT-IR profiles of OH@MOD MUV-10 compared to pristine MUV-10.



Figure S36: Raw FT-IR profiles of tBu@MOD MUV-10 compared to pristine MUV-10.



**Figure S37:** Amplification of the raw FT-IR profiles of tBu@MOD MUV-10 compared to pristine MUV-10.



Figure S38: Raw FT-IR profiles of NH<sub>2</sub>@MOD MUV-10 compared to pristine MUV-10.



**Figure S39:** Amplification of the raw FT-IR profiles of NH<sub>2</sub>@MOD MUV-10 compared to pristine MUV-10.

## S.3.4 Scanning Electron Microscopy (SEM)

# S.3.4.A Scanning Electron Microscopy Images and single point energy-dispersive X-Ray analysis (EDX)



Figure S40: SEM images of NO<sub>2</sub>@MOD MOFs.

**Table S14:** Tabulated particle sizes, standard deviations and metal content of NO<sub>2</sub>@MOD MOFs.

| NO₂@MOD         | Size(nm) | SD (nm) | % Ca <i>vs</i> Ti |
|-----------------|----------|---------|-------------------|
| F               | 148.63   | 35.26   | 45                |
| ОН              | 259.35   | 36.85   | 46                |
| tBu             | 113.89   | 25.30   | 43                |
| NH <sub>2</sub> | 147.41   | 33.04   | 43                |



Figure S41: SEM images of F@MOD MOFs.

 Table S15: Tabulated particle sizes, standard deviations and metal content of F@MOD

 MOFs.

| F@MOD           | Size(nm) | SD (nm) | % Ca <i>vs</i> Ti |
|-----------------|----------|---------|-------------------|
| NO <sub>2</sub> | 148.63   | 35.26   | 45                |
| ОН              | 549.82   | 137.78  | 42                |
| tBu             | 315.62   | 147.09  | 45                |
| NH <sub>2</sub> | 312.37   | 81.15   | 43                |



Figure S42: SEM images of OH@MOD MOFs.

**Table S16:** Tabulated particle sizes, standard deviations and metal content of OH@MOD MOFs.

| OH@MOD          | Size(nm) | SD (nm) | % Ca <i>vs</i> Ti |
|-----------------|----------|---------|-------------------|
| NO <sub>2</sub> | 259.35   | 36.85   | 46                |
| F               | 549.82   | 137.78  | 42                |
| tBu             | 624.24   | 109.41  | 45                |
| NH <sub>2</sub> | 523.67   | 128.69  | 45                |



Figure S43: SEM images of tBu@MOD MOFs.

 Table S17: Tabulated particle sizes, standard deviations and metal content of tBu@MOD MOFs.

| tBu@MOD         | Size(nm) | SD (nm) | % Ca <i>vs</i> Ti |
|-----------------|----------|---------|-------------------|
| NO <sub>2</sub> | 113.89   | 25.3    | 43                |
| F               | 315.62   | 147.09  | 45                |
| ОН              | 624.25   | 109.42  | 45                |
| NH <sub>2</sub> | 365.52   | 91.43   | 45                |



Figure S44: SEM images of NH<sub>2</sub>@MOD MOFs.

Table S18: Tabulated particle sizes, standard deviations and metal content of NH\_2@MOD MOFs.

| NH₂@MOD         | Size(nm) | SD (nm) | % Ca <i>vs</i> Ti |
|-----------------|----------|---------|-------------------|
| NO <sub>2</sub> | 147.41   | 33.04   | 43                |
| F               | 312.37   | 81.15   | 43                |
| ОН              | 523.67   | 128.69  | 45                |
| tBu             | 365.52   | 91.43   | 47                |



Figure S45: SEM images of multi-modulated MOFs.

**Table S19:** Tabulated particle sizes, standard deviations and metal content of multimodulated MOFs.

| NH <sub>2</sub> @MOD                       | Size(nm) | SD (nm) | % Ca vs Ti |
|--------------------------------------------|----------|---------|------------|
| F@NO <sub>2</sub> @OH (0.5)                | 225.0    | 75.4    |            |
| F@NO <sub>2</sub> @OH (1)                  | 112.3    | 33.2    |            |
| F@NO <sub>2</sub> @OH@NH <sub>2</sub>      | 89.3     | 19.9    |            |
| F@NO <sub>2</sub> @OH@NH <sub>2</sub> @tBu | 47.8     | 16.9    |            |
# S.3.4.B Energy-dispersive X-Ray analysis (EDX) mapping.

Given the signature elements of the 5-Fluor Isophthalic acid modulator, we have performed EDX mapping of the samples containing such modulator (F@mod series and tri, tetra and penta modulated MOFs). Unfortunately, the other functionalised modulators (nitro, hydroxy, tertbutyl and amino) only have carbon, nitrogen or oxygen atoms. While carbon and oxygen are signature elements in the MOF itself, nitrogen might be present in small quantities due to the minor presence of DMF molecules. EDX mapping shows the presence of the signature elements distributed homogeneously. As a proof-of-concept, we have performed EDX on the  $NH_2@OH$  sample, showing no presence of fluorine atoms.



Figure S46: EDX mapping images of F@NH<sub>2</sub>.



Figure S47: EDX mapping images of F@OH.



### Figure S48: EDX mapping images of F@tBu.



## Figure S49: EDX mapping images of F@NO<sub>2</sub>.



Figure S50: EDX mapping images of NH<sub>2</sub>@OH.



Figure S51: EDX mapping images of F@NO<sub>2</sub>@OH (0.5).



Figure S52: EDX mapping images of F@NO2@OH (1).



Figure S53: EDX mapping images F@NO2@OH@NH2.



Figure S54: EDX mapping images F@NO<sub>2</sub>@OH@NH<sub>2</sub>@tBu.

#### S.3.5 Thermogravimetric analysis (TGA)

We have analysed the composition of MTVM MUV-10 through the combination of TGA with molar ratios determined by <sup>1</sup>HNMR, assuming that the modulators are incorporated into MUV-10 structure  $TiCaO(H_2O)_w(BTC)_x(Mod1)_v(Mod2)_z(FA)_z(OH)_D$  using

previously reported methodology.<sup>3</sup> As Iso-X decomposes during the decomposition range of BTC, the experimental ratio between the molecular weight of the dehydrated MOF (DH MOF) and its residue is expressed as follows for a dimodulated MOF, where Iso1 and Iso2 corresponds to two different functionalised isophthalic acid modulators:

$$(R_{expDH}) = \frac{M_w [DH MOF]}{M_w [Residue]} = \frac{M_w [TiCaO(BTC)_x (Iso1)_y (Iso2)_z (O)_{(4-3x-2y-2z)}]}{M_w [TiCaO_3]}$$

$$y Iso - x = x BDC * \left(\frac{Iso - x}{BTC}\right) NMR ratio$$
Since,
Then,
$$M_w [TiCaO(BTC)_x (Iso1)_{xnmr1} (Iso2)_{xnmr2} (O)_{(4-3x-2xnmr1-2xnmr2)}]$$

$$R_{expDH} = \frac{M_w [TiCaO_3]}{M_w [TiCaO_3]}$$

$$= \frac{(R_{expDH} * M_w [TiCaO_3]) - M_w TiCaO - 2 * M_w[O]}{M_w [BTC] + nmr1 * M_w [Iso1] + nmr2 * M_w [Iso2] - \left(\frac{(3 + 2nmr1 + 2nmr2)}{2}\right)}$$

Once X (ligands, btc) has been obtained,

$$y \, Iso1 = x \, BDC * \left(\frac{Iso1}{BTC}\right) NMR \, ratio1$$
$$z \, Iso2 = x \, BDC * \left(\frac{Iso2}{BTC}\right) NMR \, ratio2$$

 $z Formate = number of BDC * \left(\frac{FA}{BTC}\right) NMR ratio$ 

The number of OH needed to compensate the charge can be calculated using the following equation:

$$4Ti + 2Ca = 2 + 3XBTC + 2yIso1 + 2zIso2 + XNMRFA + OH$$

Then OH = 4 - 3XBTC - 2yIso1 - 2zIso2 - XNMRFA

Once the number of linkers, modulators and defect-compensating species has been determined, number of water molecules is calculated as:

$$Experimental \frac{MOF}{Residue} Ratio (R_{exp}) = \frac{M_w [Calculated MOF] + x * M_w [H_2O]}{M_w [TiCaO_3]}$$

$$X(H_2O) = \frac{(R_{exp} * M_w [TiCaO_3]) - M_w [Calculated MOF]}{M_w [H_2O]}$$

b) 100

80



Please note that the same mathematical methodology is applied for tri, tetra and penta modulated MOFs. <sup>3</sup>

Normalised Mass Loss / % 60 40 20 200 300 400 100 500 600 700 Temperature / °C

Pristine MUV-10

NO2@F NO,@NH,

NO,@tBu NO2@OH

Figure S55: TGA profiles of NO<sub>2</sub>@MOD MODs compared to pristine MUV-10, a) with the end of the decomposition profiles (residue) normalised to 100% and b) with the start of the decomposition profile normalised to 100%.

**Table S20:** Data extracted from TGA analysis for the model framework  $[TiCaO(H_2O)_w(btc)_x(Iso-1)_y(Iso-2)_z(OH)_d]$ . Note that the missing linker is 1.33-x and the missing linker molar percent (ML%) (1.33-btc)/btc\*100.<sup>[2-4]</sup>

| Sample                           | Ratio<br>BTC/TI | lso-F | lso-<br>NO₂ | lso-<br>NH₂ | lso-<br>tBu | lso-<br>OH | OH-        | H₂O   | ML%    | Coordination<br>number |
|----------------------------------|-----------------|-------|-------------|-------------|-------------|------------|------------|-------|--------|------------------------|
| pristine                         | 1.403           | 0.000 | 0.000       | 0.000       | 0.000       | 0.000      | -<br>0.209 | 1.840 | -5.485 | 13.05                  |
| NO₂@F                            | 0.936           | 0.140 | 0.277       | 0.000       | 0.000       | 0.000      | 0.359      | 1.443 | 29.620 | 11.53                  |
| NO₂@OH                           | 1.049           | 0.000 | 0.243       | 0.000       | 0.000       | 0.024      | 0.319      | 1.440 | 21.132 | 11.59                  |
| NO₂@tBU                          | 1.041           | 0.000 | 0.245       | 0.000       | 0.101       | 0.000      | 0.186      | 1.931 | 21.753 | 12.053                 |
| NO <sub>2</sub> @NH <sub>2</sub> | 1.146           | 0.000 | 0.209       | 0.029       | 0.000       | 0.000      | 0.084      | 1.395 | 13.813 | 11.83                  |

| Table S21: Data | a extracted | from TGA | A analysis. |
|-----------------|-------------|----------|-------------|
|-----------------|-------------|----------|-------------|

| Sample                           | lso per ML | ML out of 8 |  |  |
|----------------------------------|------------|-------------|--|--|
| pristine                         | 0.000      | -0.418      |  |  |
| NO₂@F                            | 1.057      | 2.384       |  |  |
| NO₂@OH                           | 0.951      | 1.706       |  |  |
| NO₂@tBU                          | 1.196      | 1.756       |  |  |
| NO <sub>2</sub> @NH <sub>2</sub> | 1.298      | 1.122       |  |  |



**Figure S56:** TGA profiles of F@MOD MODs compared to pristine MUV-10, a) with the end of the decomposition profiles (residue) normalised to 100% and b) with the start of the decomposition profile normalised to 100%.

**Table S22:** Data extracted from TGA analysis for the model framework  $[TiCaO(H_2O)_w(btc)_x(Iso-1)_y(Iso-2)_z(OH)_d]$ . Note that the missing linker is 1.33-x and the missing linker molar percent (ML%) (1.33-btc)/btc\*100.<sup>[2-4]</sup>

| Sample   | Ratio<br>BTC/TI | lso-F | lso-<br>NO <sub>2</sub> | lso-<br>NH₂ | lso-<br>tBu | lso-<br>OH | OH-        | H₂O   | MI%    | Coordination<br>number |
|----------|-----------------|-------|-------------------------|-------------|-------------|------------|------------|-------|--------|------------------------|
| pristine | 1.403           | 0.000 | 0.000                   | 0.000       | 0.000       | 0.000      | -<br>0.209 | 1.840 | -5.485 | 13.05                  |
| F@NO₂    | 0.936           | 0.140 | 0.277                   | 0.000       | 0.000       | 0.000      | 0.359      | 1.443 | 29.620 | 11.53                  |
| F@OH     | 0.876           | 0.102 | 0.000                   | 0.000       | 0.000       | 0.064      | 1.038      | 1.224 | 34.099 | 11.06                  |
| F@tBu    | 1.091           | 0.139 | 0.000                   | 0.000       | 0.101       | 0.000      | 0.246      | 1.448 | 17.935 | 12.00                  |
| F@NH₂    | 1.138           | 0.131 | 0.000                   | 0.066       | 0.000       | 0.000      | 0.192      | 2.802 | 14.426 | 13.48                  |

| Table S23: Data | extracted from | TGA analysis. |
|-----------------|----------------|---------------|
|-----------------|----------------|---------------|

| Sample   | lso per ML | ML out of 8 |
|----------|------------|-------------|
| pristine | 0.000      | -0.418      |
| F@NO₂    | 1.057      | 2.384       |
| F@OH     | 0.367      | 2.741       |
| F@tBu    | 1.006      | 1.451       |
| F@NH₂    | 1.026      | 1.171       |



**Figure S57:** TGA profiles of OH@MOD MODs compared to pristine MUV-10, a) with the end of the decomposition profiles (residue) normalised to 100% and b) with the start of the decomposition profile normalised to 100%.

**Table S24:** Data extracted from TGA analysis for the model framework  $[TiCaO(H_2O)_w(btc)_x(Iso-1)_y(Iso-2)_z(OH)_d]$ . Note that the missing linker is 1.33-x and the missing linker molar percent (ML%) (1.33-btc)/btc\*100.<sup>[2–4]</sup>

| Sample   | Ratio<br>BTC/TI | lso-F | lso-<br>NO₂ | lso-<br>NH₂ | lso-<br>tBu | lso-<br>OH | OH-        | H <sub>2</sub> O | MI%    | Coordination<br>number |
|----------|-----------------|-------|-------------|-------------|-------------|------------|------------|------------------|--------|------------------------|
| pristine | 1.403           | 0.000 | 0.000       | 0.000       | 0.000       | 0.000      | -<br>0.209 | 1.840            | -5.485 | 13.05                  |
| OH@NO₂   | 1.049           | 0.000 | 0.243       | 0.000       | 0.000       | 0.024      | 0.319      | 1.440            | 21.132 | 11.59                  |
| OH@F     | 0.876           | 0.102 | 0.000       | 0.000       | 0.000       | 0.064      | 1.038      | 1.224            | 34.099 | 11.06                  |
| OH@tBU   | 1.109           | 0.000 | 0.000       | 0.000       | 0.039       | 0.050      | 0.495      | 6.441            | 16.628 | 16.77                  |
| OH@NH₂   | 1.170           | 0.000 | 0.000       | 0.052       | 0.000       | 0.095      | 0.194      | 1.293            | 12.017 | 11.80                  |

| Table S25: Data ex | tracted from | TGA analy | sis. |
|--------------------|--------------|-----------|------|
|--------------------|--------------|-----------|------|

| Sample   | lso per ML | ML out of 8 |
|----------|------------|-------------|
| pristine | 0.000      | -0.418      |
| OH@NO₂   | 0.951      | 1.706       |
| OH@F     | 0.367      | 2.741       |
| OH@tBU   | 0.403      | 1.347       |
| OH@NH₂   | 0.924      | 0.979       |



**Figure S58:** TGA profiles of tBu@MOD MODs compared to pristine MUV-10, a) with the end of the decomposition profiles (residue) normalised to 100% and b) with the start of the decomposition profile normalised to 100%.

**Table S26:** Data extracted from TGA analysis for the model framework  $[TiCaO(H_2O)_w(btc)_x(Iso-1)_y(Iso-2)_z(OH)_d]$ . Note that the missing linker is 1.33-x and the missing linker molar percent (ML%) (1.33-btc)/btc\*100.<sup>[2-4]</sup>

| Sample   | Ratio<br>BTC/TI | lso-F | lso-<br>NO₂ | lso-<br>NH₂ | lso-<br>tBu | lso-<br>OH | OH-        | H₂O   | MI%    | Coordination<br>number |
|----------|-----------------|-------|-------------|-------------|-------------|------------|------------|-------|--------|------------------------|
| pristine | 1.403           | 0.000 | 0.000       | 0.000       | 0.000       | 0.000      | -<br>0.209 | 1.840 | -5.485 | 13.05                  |
| tBU@NO₂  | 1.041           | 0.000 | 0.245       | 0.000       | 0.101       | 0.000      | 0.186      | 1.931 | 21.753 | 12.05                  |
| tBU@F    | 1.091           | 0.139 | 0.000       | 0.000       | 0.101       | 0.000      | 0.246      | 1.448 | 17.935 | 12.00                  |
| tBU@OH   | 1.109           | 0.000 | 0.000       | 0.000       | 0.039       | 0.050      | 0.495      | 6.441 | 16.628 | 16.77                  |
| tBU@NH₂  | 1.176           | 0.000 | 0.000       | 0.052       | 0.091       | 0.000      | 0.184      | 1.760 | 11.554 | 12.29                  |

| Table S27: Data | extracted from | om TGA analysis. |
|-----------------|----------------|------------------|
|-----------------|----------------|------------------|

| Sample              | lso per ML | ML out of 8 |
|---------------------|------------|-------------|
| pristine            | 0.000      | -0.418      |
| tBU@NO <sub>2</sub> | 1.196      | 1.756       |
| tBU@F               | 1.006      | 1.451       |
| tBU@OH              | 0.403      | 1.347       |
| tBU@NH₂             | 0.934      | 0.942       |



**Figure S59:** TGA profiles of NH2@MOD MODs compared to pristine MUV-10 a) with the end of the decomposition profiles (residue) normalised to 100% and b) with the start of the decomposition profile normalised to 100%.

**Table S28:** Data extracted from TGA analysis for the model framework  $[TiCaO(H_2O)_w(btc)_x(Iso-1)_y(Iso-2)_z(OH)_d]$ . Note that the missing linker is 1.33-x and the missing linker molar percent (ML%) (1.33-btc)/btc\*100.<sup>[2-4]</sup>

| Sample                           | Ratio<br>BTC/TI | lso-F | lso-<br>NO₂ | lso-<br>NH₂ | lso-<br>tBu | lso-<br>OH | OH-        | H₂O   | MI%    | Coordination<br>number |
|----------------------------------|-----------------|-------|-------------|-------------|-------------|------------|------------|-------|--------|------------------------|
| pristine                         | 1.403           | 0.000 | 0.000       | 0.000       | 0.000       | 0.000      | -<br>0.209 | 1.840 | -5.485 | 13.05                  |
| NH <sub>2</sub> @NO <sub>2</sub> | 1.146           | 0.000 | 0.209       | 0.029       | 0.000       | 0.000      | 0.084      | 1.395 | 13.813 | 11.83                  |
| NH₂@F                            | 1.138           | 0.131 | 0.000       | 0.066       | 0.000       | 0.000      | 0.192      | 2.802 | 14.426 | 13.48                  |
| NH₂@OH                           | 1.170           | 0.000 | 0.000       | 0.052       | 0.000       | 0.095      | 0.194      | 1.293 | 12.017 | 11.80                  |
| NH₂@tBu                          | 1.176           | 0.000 | 0.000       | 0.052       | 0.091       | 0.000      | 0.184      | 1.760 | 11.554 | 12.29                  |

| Sample                           | lso per ML | ML out of 8 |
|----------------------------------|------------|-------------|
| pristine                         | 0.000      | -0.418      |
| NH <sub>2</sub> @NO <sub>2</sub> | 1.298      | 1.122       |
| NH₂@F                            | 1.026      | 1.171       |
| NH₂@OH                           | 0.924      | 0.979       |
| NH₂@tBu                          | 0.934      | 0.942       |



**Figure S60:** TGA profiles of NO2@MOD MODs compared to pristine MUV-10 a) with the end of the decomposition profiles (residue) normalised to 100% and b) with the start of the decomposition profile normalised to 100%.

| Table  | S30:       | Data                   | extracted                  | from                             | TGA                 | analysis | for | the | model | framework |
|--------|------------|------------------------|----------------------------|----------------------------------|---------------------|----------|-----|-----|-------|-----------|
| [TiCaO | $(H_2O)_w$ | (btc) <sub>x</sub> (Is | so-1) <sub>y</sub> (Iso-2) | ) <sub>z</sub> (OH) <sub>d</sub> | ]. <sup>[2–4]</sup> | -        |     |     |       |           |

| Sample           | Ratio<br>BTC/TI | lso-F | lso-<br>NO₂ | lso-<br>NH₂ | lso-<br>tBu | lso-<br>OH | OH-    | H₂O   |
|------------------|-----------------|-------|-------------|-------------|-------------|------------|--------|-------|
| pristine         | 1.403           | 0.000 | 0.000       | 0.000       | 0.000       | 0.000      | -0.209 | 1.840 |
| F@NO₂@OH (0.5)   | 1.045           | 0.060 | 0.130       | 0.000       | 0.000       | 0.019      | 0.445  | 1.966 |
| F@NO₂@OH (1)     | 1.018           | 0.119 | 0.255       | 0.000       | 0.000       | 0.017      | 0.165  | 1.099 |
| F@NO2@OH@NH2     | 1.026           | 0.086 | 0.206       | 0.019       | 0.000       | 0.021      | 0.259  | 2.453 |
| F@NO2@OH@NH2@tBu | 0.999           | 0.089 | 0.186       | 0.035       | 0.052       | 0.026      | 0.225  | 2.033 |

**Table S31:** Data extracted from TGA analysis. Note that the missing linker is 1.33-xand the missing linker molar percent(ML%) (1.33-btc)/btc\*100.  $^{[2-4]}$ 

| Sample                                     | ML%    | Coordination positions | lso per ML | ML out of 8 |
|--------------------------------------------|--------|------------------------|------------|-------------|
| pristine                                   | -5.485 | 13.05                  | 0.000      | -0.418      |
| F@NO₂@OH (0.5)                             | 21.420 | 12.222                 | 0.736      | 1.729       |
| F@NO₂@OH (1)                               | 23.458 | 11.390                 | 1.251      | 1.892       |
| F@NO2@OH@NH2                               | 22.854 | 12.704                 | 1.091      | 1.844       |
| F@NO <sub>2</sub> @OH@NH <sub>2</sub> @tBu | 24.878 | 12.209                 | 1.175      | 2.005       |

### S.3.6 Nitrogen Adsorption and desorption measurements

**Table S32:** Tabulated data extracted from  $N_2$  adsorption and desorption measurements of MOD@MOD MOFs showing a general increase in surface area, microporosity and total pore volumes, alongside the theortical molecular weigh of the MOFs calculated by TGA, shiowing that the two MOFs with decreased porosity

| Sample                           | S <sub>BET</sub> | SMICRO  | S <sub>EXT</sub> |                      | V <sub>MESO</sub>    | V <sub>TOTAL</sub>   |
|----------------------------------|------------------|---------|------------------|----------------------|----------------------|----------------------|
|                                  | (m² /g)          | (m² /g) | (m² /g)          | (cm <sup>3</sup> /g) | (cm <sup>3</sup> /g) | (cm <sup>3</sup> /g) |
| Pristine                         | 1040             | 974     | 66               | 0.365                | 0.037                | 0.402                |
| F@NH₂                            | 1314             | 1142    | 172              | 0.443                | 0.109                | 0.552                |
| F@OH                             | 1164             | 1015    | 149              | 0.392                | 0.096                | 0.488                |
| F@tBu                            | 736              | 591     | 145              | 0.234                | 0.094                | 0.328                |
| F@NO₂                            | 1249             | 1050    | 199              | 0.411                | 0.166                | 0.577                |
| NH₂@OH                           | 1116             | 994     | 122              | 0.378                | 0.076                | 0.454                |
| NH₂@tBu                          | 1030             | 834     | 196              | 0.324                | 0.156                | 0.48                 |
| NH <sub>2</sub> @NO <sub>2</sub> | 1124             | 976     | 148              | 0.375                | 0.088                | 0.463                |
| tBu@NO <sub>2</sub>              | 1168             | 893     | 275              | 0.35                 | 0.295                | 0.645                |
| tBu@OH                           | 518              | 436     | 82               | 0.169                | 0.052                | 0.221                |
| NO₂@OH                           | 1123             | 927     | 196              | 0.36                 | 0.155                | 0.515                |

Note that in all cases  $S_{BET}$  corresponds to Brunauer–Emmett–Teller surface area,  $S_{micro}$  to micropore surface area,  $S_{ext}$  to external surface area,  $V_{micro}$  to micropore volume,  $V_{meso}$  to mesopore volume and  $V_{total}$  to total pore volume.

 $V_{\text{micro}}$  was calculated using the *t*-plot model with the Harkins and Jura thickness curve based on the BET surface areas.  $V_{\text{total}}$  was calculated at  $P/P_0 = 0.9$ , prior to the interparticle space <sup>[5]</sup> and  $V_{\text{meso}} = V_{\text{total}} - V_{\text{micro}}$ .

The pore size distributions of the di-modulated MOFswere calculated using NLDFT oxide surface pore model within the MicroActive software, with no regularisation, whereas the pillared clay model was used for the tri, tetra and penta-modulated MOFs, also with no regularisation, as the oxide surface pore model as providing higher errors due to the loss of the type I isotherm.

The BET surface area was calculated based on the decrease in the Q (1-p/p0) values, which slightly differ between samples given their differences in porosity features. BET plots are given in Figures S61-74



Figure S61: BET plot of F@NH<sub>2</sub>.



Figure S62: BET plot of F@OH.







Figure S64: BET plot of F@No<sub>2</sub>.



Figure S65: BET plot of NH<sub>2</sub>@OH.



Figure S66: BET plot of NH<sub>2</sub>@tBu.



Figure S67: BET plot of NH<sub>2</sub>@NO<sub>2</sub>.



Figure S68: BET plot of NO<sub>2</sub>@tBu.







Figure S70: BET plot of NO<sub>2</sub>@OH.



Figure S71: BET plot of F@NO2@OH (0.5)



Figure S72: BET plot of F@NO2@OH (1)



Figure S73: BET plot of F@NO<sub>2</sub>@OH@NH<sub>2</sub>.



Figure S74: BET plot of F@NO2@OH@NH2@tBu.



Figure S75: N<sub>2</sub> adsorption and desorption isotherms of NO2@MOD MOFs.



Figure S76: Pore size distributions extracted from the  $N_2$  adsorption isotherms of  $NO_2@MOD MOFs$ .

**Table S33:** Tabulated data extracted from  $N_2$  adsorption and desorption measurementsof NO2@MOD MOFs.

| Sample      | S <sub>BET</sub> | S <sub>MICRO</sub> | S <sub>EXT</sub> |                      | V <sub>MESO</sub>    | V <sub>TOTAL</sub>   |
|-------------|------------------|--------------------|------------------|----------------------|----------------------|----------------------|
|             | (m² /g)          | (m² /g)            | (m² /g)          | (cm <sup>3</sup> /g) | (cm <sup>3</sup> /g) | (cm <sup>3</sup> /g) |
| Pristine    | 1040             | 974                | 66               | 0.365                | 0.037                | 0.402                |
| NO₂@F       | 1249             | 1050               | 199              | 0.411                | 0.166                | 0.577                |
| NO₂@OH      | 1123             | 927                | 196              | 0.360                | 0.155                | 0.515                |
| NO₂@tBu     | 1168             | 893                | 275              | 0.350                | 0.295                | 0.645                |
| $NO_2@NH_2$ | 1124             | 976                | 148              | 0.375                | 0.088                | 0.463                |



Figure S77: N<sub>2</sub> adsorption and desorption isotherms of F@MOD MOFs.



Figure S78: Pore size distributions extracted from the  $N_2$  adsorption isotherms of F@MOD MOFs.

**Table S34:** Tabulated data extracted from  $N_2$  adsorption and desorption measurements of F@MOD MOFs.

| Sample            | S <sub>BET</sub> | S <sub>MICRO</sub> | S <sub>EXT</sub> | V <sub>MICRO</sub>   | V <sub>MESO</sub>    | V <sub>TOTAL</sub>   |
|-------------------|------------------|--------------------|------------------|----------------------|----------------------|----------------------|
|                   | (m² /g)          | (m² /g)            | (m² /g)          | (cm <sup>3</sup> /g) | (cm <sup>3</sup> /g) | (cm <sup>3</sup> /g) |
| Pristine          | 1040             | 974                | 66               | 0.365                | 0.037                | 0.402                |
| F@NO <sub>2</sub> | 1249             | 1050               | 199              | 0.411                | 0.166                | 0.577                |
| F@OH              | 1164             | 1015               | 149              | 0.392                | 0.096                | 0.488                |
| F@tBu             | 736              | 591                | 145              | 0.234                | 0.094                | 0.328                |
| F@NH <sub>2</sub> | 1314             | 1142               | 172              | 0.443                | 0.109                | 0.552                |



Figure S79:  $N_2$  adsorption and desorption isotherms of OH@MOD MOFs.



Figure S80: Pore size distributions extracted from the  $N_2$  adsorption isotherms of OH@MOD MOFs.

**Table S35:** Tabulated data extracted from  $N_2$  adsorption and desorption measurements of OH@MOD MOFs.

| Sample             | S <sub>BET</sub> | S <sub>MICRO</sub> | S <sub>EXT</sub> | V <sub>MICRO</sub>   | V <sub>MESO</sub>    | V <sub>TOTAL</sub>   |
|--------------------|------------------|--------------------|------------------|----------------------|----------------------|----------------------|
|                    | (m² /g)          | (m² /g)            | (m² /g)          | (cm <sup>3</sup> /g) | (cm <sup>3</sup> /g) | (cm <sup>3</sup> /g) |
| Pristine           | 1040             | 974                | 66               | 0.365                | 0.037                | 0.402                |
| OH@NO <sub>2</sub> | 1123             | 927                | 196              | 0.36                 | 0.155                | 0.515                |
| OH@F               | 1164             | 1015               | 149              | 0.392                | 0.096                | 0.488                |
| OH@tBu             | 518              | 436                | 82               | 0.169                | 0.052                | 0.221                |
| OH@NH <sub>2</sub> | 1116             | 994                | 122              | 0.378                | 0.076                | 0.454                |



Figure S81: N<sub>2</sub> adsorption and desorption isotherms of tBu@MOD MOFs.



Figure S82: Pore size distributions extracted from the  $N_2$  adsorption isotherms of tBu@MOD MOFs.

**Table S36:** Tabulated data extracted from  $N_2$  adsorption and desorption measurementsof tBu@MOD MOFs.

| Sample              | S <sub>BET</sub> | S <sub>MICRO</sub> | S <sub>EXT</sub> | V <sub>MICRO</sub>   | V <sub>MESO</sub>    | V <sub>TOTAL</sub>   |
|---------------------|------------------|--------------------|------------------|----------------------|----------------------|----------------------|
|                     | (m² /g)          | (m² /g)            | (m² /g)          | (cm <sup>3</sup> /g) | (cm <sup>3</sup> /g) | (cm <sup>3</sup> /g) |
| Pristine            | 1040             | 974                | 66               | 0.365                | 0.037                | 0.402                |
| tBu@NO <sub>2</sub> | 1168             | 893                | 275              | 0.35                 | 0.295                | 0.645                |
| tBu@F               | 736              | 591                | 145              | 0.234                | 0.094                | 0.328                |
| tBu@OH              | 518              | 436                | 82               | 0.169                | 0.052                | 0.221                |
| tBu@NH <sub>2</sub> | 1030             | 834                | 196              | 0.324                | 0.156                | 0.48                 |



Figure S83: N<sub>2</sub> adsorption and desorption isotherms of NH<sub>2</sub>@MOD MOFs.



Figure S84: Pore size distributions extracted from the  $N_2$  adsorption isotherms of  $NH_2@MOD MOFs$ .

**Table S37:** Tabulated data extracted from  $N_2$  adsorption and desorption measurements of  $NH_2@MOD MOFs$ .

| Sample      | S <sub>BET</sub> | S <sub>MICRO</sub> | S <sub>EXT</sub> | V <sub>MICRO</sub>   | V <sub>MESO</sub>    | V <sub>TOTAL</sub>   |
|-------------|------------------|--------------------|------------------|----------------------|----------------------|----------------------|
|             | (m² /g)          | (m² /g)            | (m² /g)          | (cm <sup>3</sup> /g) | (cm <sup>3</sup> /g) | (cm <sup>3</sup> /g) |
| Pristine    | 1040             | 974                | 66               | 0.365                | 0.037                | 0.402                |
| $NH_2@NO_2$ | 1124             | 976                | 148              | 0.375                | 0.088                | 0.463                |
| NH₂@F       | 1314             | 1142               | 172              | 0.443                | 0.109                | 0.552                |
| NH₂@OH      | 1116             | 994                | 122              | 0.378                | 0.076                | 0.454                |
| NH₂@tBu     | 1030             | 834                | 196              | 0.324                | 0.156                | 0.48                 |



Figure S85:  $N_2$  adsorption and desorption isotherms of multi-modulated MOFs. Table S38: Tabulated data extracted from  $N_2$  adsorption and desorption measurements of multi-modulated MOFs

| Sampla                                     | SBET    | SMICRO  | S <sub>EXT</sub> | V <sub>MICRO</sub>   | V <sub>MESO</sub>    | V <sub>TOTAL</sub>   |
|--------------------------------------------|---------|---------|------------------|----------------------|----------------------|----------------------|
| Sample                                     | (m² /g) | (m² /g) | (m² /g)          | (cm <sup>3</sup> /g) | (cm <sup>3</sup> /g) | (cm <sup>3</sup> /g) |
| Pristine                                   | 1040    | 974     | 66               | 0.365                | 0.037                | 0.402                |
| F@NO <sub>2</sub> @OH (0.5)                | 1080    | 857     | 223              | 0.336                | 0.194                | 0.53                 |
| F@NO2@OH (1)                               | 1164    | 932     | 232              | 0.364                | 0.194                | 0.558                |
| F@NO <sub>2</sub> @OH@NH <sub>2</sub>      | 1206    | 932     | 274              | 0.366                | 0.072                | 0.438                |
| F@NO <sub>2</sub> @OH@NH <sub>2</sub> @tBu | 1148    | 835     | 313              | 0.333                | 0.319                | 0.652                |



**Figure S86:** Pore size distributions extracted from the  $N_2$  adsorption isotherms of multimodulated MOFs.

# S.4. Catalytic activity of MTVM MOFs

10  $\mu$ L of cyclohexane oxide and 10  $\mu$ L of aniline were dissolved in 0.5 mL of ethanol and let them react at room temperature in the presence of 10 mg of MOF for one day. Sample aliquots were analysed by GC-FID (Gas Chromatography-Flame Ionization Detector.



| Time | Pristine | F/NO <sub>2</sub> | F/tBu | NO <sub>2</sub> /OH | tBu/NH <sub>2</sub> | NO <sub>2</sub> /F/OH/NH <sub>2</sub> /tBu | tBu<br>/NO <sub>2</sub> |
|------|----------|-------------------|-------|---------------------|---------------------|--------------------------------------------|-------------------------|
| 0    | 0.00     | 0.00              | 0.00  | 0.00                | 0.00                | 0.00                                       | 0.00                    |
| 12   | 5.57     | 7.36              | 5.99  | 13.35               | 10.78               | 11.05                                      | 11.32                   |
| 24   | 13.53    | 18.57             | 26.28 | 23.86               | 22.30               | 28.83                                      | 38.01                   |
| 48   | 11.71    | 34.28             | 37.28 | 38.35               | 53.13               | 62.74                                      | 62.44                   |
| 72   | 44.27    | 51.80             | 58.80 | 62.12               | 64.81               | 75.55                                      | 78.04                   |

 Table S39:
 Tabulated data of conversion %.



Figure S87: Catalytic activity of the MTVM MOFs.

After 72 hours of reaction, the MOF catalyst were collected by centrifugation and rinsed with MeOH prior to PXRD measurements. Note that compounds different from the reaction substrates and products were not identified in the HPLC analysis of the reaction, suggesting that no linker or modulator were leaching from the samples.



Figure S88: PXRD profile before and after catalysis.



Figure S89: PXRD profile before and after catalysis.



Figure S90: PXRD profile before and after catalysis.



Figure S91: PXRD profile before and after catalysis.



Figure S92: PXRD profile before and after catalysis.



Figure S93: PXRD profile before and after catalysis.



Figure S94: PXRD profile before and after catalysis.



**Figure S95:** Catalytic conversion after 72 hours as a function of the particle size of the catalysts, showing no relation.


**Figure S96:** Catalytic conversion after 72 hours as a function of the BET surface area of the catalysts, showing no relation.



**Figure S97:** Catalytic conversion after 72 hours as a function of the external surface area of the catalysts, showing no relation.



**Figure S98:** Catalytic conversion after 72 hours as a function of the molar percent of linker deficiency, showing no relation.

## S.5. References

[1] G. C. Shearer, S. Chavan, S. Bordiga, S. Svelle, U. Olsbye, K. P. Lillerud, *Chem. Mater.* **2016**, *28*, 3749/3761.

[2] I. A. Lázaro, N. Almora-Barrios, S. Tatay, C. Popescu, C. Martí-Gastaldo, *Chem. Sci.* 2021, *12*, 11839–11844.

[3] I. A. Lázaro, Eur. J. Inorg. Chem. 2020, 2020, 4284-4294.

[4] I. A. Lázaro, N. Almora-Barrios, S. Tatay, C. Martí-Gastaldo, *Chem. Sci.* 2020, *12*, 2586-2593.

[5] F. Rouquerol, J. Rouquerol and K. Sing, *Adsorption by Powders and Porous Solids*, Academic Press, London, 1999, 191–217.