Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Excellent Electrocatalytic Performance of Metal-free Thiophene-Sulfur Covalent Organic Framework for Hydrogen Evolution in Alkaline Medium

Yunchao Ma,^{a,1} Yue Fu,^{a,1} Wei Jiang^b, Yuanyuan Wu^b, Chunbo Liu, *a,^b, Guangbo Che*c

and Qianrong Fang*d

^aKey Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, P.R. China ^bCollege of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, P.R. China

^cCollege of Chemistry, Baicheng Normal University, Baicheng, 137000, China ^dState Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China

Table of contents

Section S1	Materials and characterization	S3-S7
Section S2	PXRD patterns	S 8
Section S3	TGA	S9
Section S4	Gas adsorption isotherms	S10-S11
Section S5	Stability test	S12- S13
Section S6	Structure and composition of JLNU-COFs after HER stability test	S14
Section S7	Electrochemical performance	S15- S25
Section S8	Unit cell parameters and fractional atomic coordinates	S26- S27
Section S9	Comparison of HER performance with other electrocatalyst	S28
Section S10	References	S29- S30

Section S1. Materials and characterization

S1.1 Materials and instruments

All starting materials and solvents, unless otherwise noted, were obtained from J&K scientific LTD. 2,2'-bithiophenyl-5,5'-dicarbaldehyde (bTDC) were purchased from Shanghai Aladdin Biochemical Technology Co.. Fourier transform infrared (FT-IR) spectra were acquired on a Thermoscientific Nicolet 4700 Fourier Transform Infrared Spectrometer with KBr pellet. Thermogravimetric analysis (TGA) was recorded on a STA 449 F3 *Jupiter* thermal analyzer with N₂ flow rate of 20 mL min⁻¹ at a heating rate of 5 °C min⁻¹ to 800 °C. PXRD data were collected on a PANalytical B.V. Empyrean powder diffractometer using a Cu K α source ($\lambda = 1.5418$ Å) over the range of $2\theta = 2.0-40.0^{\circ}$ with a step size of 0.02° and 2 s per step. The sorption isotherm for N₂ was measured by using a Micromeritics ASAP 2460 analyzer with ultra-high-purity gas (99.999% purity). To estimate the pore size distributions, nonlocal density functional theory (NLDFT) was applied to analyze the N₂ isotherm on the basis of the model of N₂@77K on carbon with slit pores and the method of non-negative regularization. The SEM images were obtained on JEOL 8100 scanning electron microscope. X-ray photoelectron spectroscopy (XPS) was obtained by Escalab 250XI X-ray electron spectrometer (VG Scientific, America).

S1.2 Electrochemical measurements

The electrocatalytic properties of the catalysts for hydrogen evolution reaction were evaluated with a three-electrode configuration on a CHI 760E electrochemical workstation (CHI Instruments, Shanghai, China). To prepare the working electrode, 2 mg of the electrocatalyst combined with 600 μ L of ethanol and 4 μ L of Nafion was treated by ultrasonication for 20 min; then, the asprepared suspension (12 μ L, corresponding to a mass loading of 0.57 mg cm⁻²) was slowly deposited on glassy carbon (GC, 3 mm diameter) electrode. After continuous purging with N₂ to remove dissolved gases, 1.0 M KOH, 0.5 M H₂SO₄ and 1.0 M PBS solutions were used as alkaline, acidic and neutral electrolytes, respectively. The as-prepared sample was directly used as the working electrode. Hg/HgO and graphite rods were used as reference and counter electrodes in 1.0 M KOH and 1.0 M PBS solutions. Potential measurements were all converted to potential values

relative to the reversible hydrogen electrode (RHE) based on E (vs. RHE) = E (vs. Hg/HgO) + 0.0591*pH + 0.098. While Saturated Ag/AgCl in 0.5 M H₂SO₄ was used as the reference electrode, Pt filaments were used as counter electrodes. the potentials were corrected to the reversible hydrogen electrode (RHE) in accordance E (vs. RHE) = E (vs. Ag/AgCl) + 0.059*pH + 0.197. LSV curves were obtained in a nitrogen-saturated electrolyte at a sweep rate of 10 mV/s. The ohmic potential drop (iR) losses that arise from the solution resistance were all corrected. The EIS was tested in the constant potential mode in the frequency range 1 Hz to 100 kHz. Cyclic voltammetry (CV) curves of the samples in different electrolytes were tested at different scan rates (20, 40, 60, 80 and 100 mV/s) and further calculated to obtain the bilayer capacitance value C_{dl}.

S1.3 The HER reaction process

In alkaline medium, the HER reaction process is assigned to the Volmer-Heyrovsky pathway^[1,2]. Electrochemical reaction step:

$\mathrm{H}^* + \mathrm{e}^- \rightarrow \mathrm{H}_{\mathrm{ads}}$	Volmer reaction step
$\mathrm{H}^* + \mathrm{H}_{\mathrm{ads}} + \mathrm{e}^{\scriptscriptstyle -} \to \mathrm{H}_2$	Heyrovsky reaction step
$2H_{ads} \rightarrow H_2$	Tafel reastion step

Where H* represents the catalytic site with an adsorbed H-species.

S1.4 The Tafel equation is presented as:

$$\eta = \mathbf{a} + \mathbf{b} \log(\mathbf{i}/\mathbf{i}_0)$$

 η is the overpotential, i is current density, i_0 is the exchange current density, b is the Tafel slope and a is the constant term.

S1.5 The HER reaction rate-limiting step

In these multi-step reactions, the Tafel slope is $b = 2.303 \text{ RT}/\alpha\text{F}$, where b is the Tafel slope (V), R the gas constant (J K⁻¹ mol⁻¹), T temperature (K), α the transfer coefficient (independent of temperature) and F is the Faraday constant (C mol⁻¹). The Tafel slope plays an important role in demonstrating the mechanism when the mechanism is the rate-determining step (rds) of a multi-

step reaction^[3]. The widely accepted view is that it has been widely accepted that the value of the charge-transfer coefficient, depends on the rds for multi-step reactions.

When the rds is Volmer step or Volmer step + Heyrovsky step or Volmer step + Tafel step, the value of $\alpha = 0.5$, the Tafel slope becomes 118 mV dec⁻¹ at 298 K calculated from b = 2.303 RT/ α F. Other possibilities are $\alpha = 1.5$ and b = 40 mV when the Heyrovsky step is the rds, and $\alpha = 2$ and b = 30 mV when the Tafel step is the rds^[4]. Therefore, the Tafel slopes and the α values are b = 131 mV and $\alpha = 0.45$ for the JLNU-301 electrode, b = 113 mV and $\alpha = 0.52$ for the JLNU-302 electrode.

S1.6 Electrochemical active surface area (ECSA) calculation:

The double layer capacitance (C_{dl}) was evaluated according to the following equation: $C_{dl} = \Delta j/v$, which Δj is the current density difference between anode and cathode at the potential corresponding to 0.25 V and v is the scan rate. The slope of the line plots corresponds to the double of C_{dl}. Subsequently, the ECSA was estimated from the C_{dl} according to ECSA= C_{dl}/C_s, which C_s is the specific capacitance.

S1.7 Faraday efficiency calculation:

(Amount of H₂ generated experimentally)

The Faraday efficiency calculation: $FE\% = (Amount of H_2 generated theoretically) = \frac{nNF}{Q} \times 100\%$

Where n equals to 2, N is the number of hydrogen produced during the experiment (mol) and Q is the total charge passed through the reaction.

S1.8 Synthesis of JLUN-301

2,4,6-tris(4-aminophenyl)-1,3,5-triazine (TAPT) (0.04 mmol, 14.18 mg) and Thieno[3,2b]thiophene-2,5-dicarboxaldehyde (TTDC) (0.06 mmol, 11.78 mg) were weighted into a Pyrex tube (volume: *ca* 20 ml with a both length of 10 cm, neck length of 9 cm) and to the mixture was added mesitylene (0.75 ml), 1,4-dioxane(0.25 ml) and 0.1 ml of aqueous acetic acid (6.0 mol/L). The tube was flash frozen at 77 K (LN₂ bath), evacuated to an internal pressure of 0.15 mmHg and flame sealed. Upon sealing the length of the tube was reduced to *ca*. 13 cm. The reaction mixture was heated at 120 °C for 72 h to afford a orange precipitate which was isolated by filtration over a medium glass frit and washed with anhydrous acetone (3×20 ml). The yield is about 74.0% (19.2 mg). The solvent was removed under vacuum at 80 °C to afford the corresponding products as orange powder of JLNU-301. Anal. Calcd for C₆₆H₃₆N₁₂S₆: C: 66.67; H: 3.03; N:14.14; S: 16.16. Found: C:66.58; H: 3.11; N: 14.08; S: 16.23. Solid-state ¹³C NMR (500MH_Z): 13.11, 18.38, 57.96, 106.75, 114.99, 129.14, 133.99, 142.79, 150.81, 169.07 ppm. FT-IR (KBr): 810, 880, 1052, 1092, 1460, 1578, 1613, 2968, 3398 cm⁻¹.

S1.9 Synthesis of JLUN-302

In a similar procedure of JLNU-301, 2,4,6-tris(4-aminophenyl)-1,3,5-triazinez (TAPT) (0.03 mmol, 10.63 mg) and 2,2'-dithiophene-5,5'-dicarboxaldehyde (bTDC) (0.045 mmol, 10.00 mg) were weighted into a Pyrex tube (volume: *ca* 20 ml with a both length of 10 cm, neck length of 9 cm) and to the mixture was added butanol (1 ml) and 0.1 ml of aqueous acetic acid (6.0 mol/L). The tube was flash frozen at 77 K (LN₂ bath), evacuated to an internal pressure of 0.15 mmHg and flame sealed. Upon sealing the length of the tube was reduced to *ca*. 13 cm. The reaction mixture was heated at 120 °C for 72 h to afford a orange precipitate which was isolated by filtration over a medium glass frit and washed with anhydrous acetone (3 × 20 ml). The yield is about 72.3% (15.2 mg). The solvent was removed under vacuum at 80 °C to afford the corresponding products as red powder for JLNU-302. Anal. Calcd for $C_{72}H_{42}N_{12}S_6$: C: 68.25; H: 3.32; N: 13.27; S: 15.16. Found: C: 68.31; H: 3.27; N: 13.25; S: 15.17. Solid-state ¹³C NMR (500MH_Z): 18.71, 25.67, 33.58, 114.37, 117.27, 130.46, 133.89, 142.59, 152.07, 170.04, 182.31 ppm. FT-IR (KBr): 806, 868, 1048, 1362, 1502, 1574, 1613, 2324, 3680 cm⁻¹.

Section S2: PXRD patterns

Figure S1. Comparison of PXRD patterns for JLNU-301: calculated based on the AA stacked (blue), AB stacked (red), and experiment (black).

Figure S2. Comparison of PXRD patterns for JLNU-302: calculated based on the AA stacked (blue), AB stacked (red), and experiment (black).

Section S3: TGA

Figure S3. TGA curves of JLNU-301 and JLNU-302 in $N_{\rm 2}$ atmosphere.

Section S4: Gas adsorption isotherms

Figure S4. N₂ adsorption-desorption isotherms of JLNU-301.

Figure S5. N₂ adsorption-desorption isotherms of JLNU-302.

Figure S6. BET pole of JLNU-301 calculated from N₂ adsorption isotherm at 77 K.

Figure S7. BET pole of JLNU-302 calculated from N₂ adsorption isotherm at 77 K.

Figure S8. The pore size distribution curve of JLNU-301.

Figure S9. The pore size distribution curve of JLNU-302.

Figure S10. PXRD patterns of JLNU-301 after 3 d treatment in different organic solvents.

Figure S11. PXRD patterns of JLNU-301 after 3 d treatment in acid/base aqueous solutions.

Figure S12. PXRD patterns of JLNU-302 after 3 d treatment in different organic solvents.

Figure S13. PXRD patterns of JLNU-302 after 3 d treatment in acid/base aqueous solutions.

Section S6: Structure and composition of JLNU-COFs after HER

<mark>stability test</mark>

Figure S14. PXRD of JLNU-301 before and after 20 hours of HER stability test.

Figure S15. PXRD of JLNU-302 before and after 20 hours of HER stability test.

Figure S17. Polarization curves of JLNU-301 and JLNU-302 in 0.5 M H₂SO₄.

Figure S18. Tafel plots of JLNU-301 and JLNU-302 in 0.5 M H₂SO₄.

Figure S19. Polarization curves of JLNU-301 and JLNU-302 in 1.0 M PBS.

Figure S20. Tafel plots of JLNU-301 and JLNU-302 in 1.0 M PBS.

Figure S21. The Nyquist plots of JLNU-301 and JLNU-302 at 0.5 M H₂SO₄.

Figure S22. The Nyquist plots of JLNU-301 and JLNU-302 at 1.0 M PBS.

Figure S23. The LSV curves of JLUN-301 before and after 2-week tests.

Figure S24. The LSV curves of JLUN-302 before and after 2-week tests.

Figure S25. Chronopotentiometry plot for JLNU-301 and JLNU-302 in 0.5 H₂SO₄.

Figure S26. Chronopotentiometry plot for JLNU-301 and JLNU-302 in 1.0 M PBS.

Figure S27. The LSV curves of JLUN-301 before and after 1000 CV tests.

Figure S28. LSV curves of JLUN-302 before and after 1000 CV tests.

Figure S29. LSV curves of JLUN-301 before and after 1000 CV tests.

Figure S30. LSV curves of JLUN-302 before and after 1000 CV tests.

Figure S31. CV curves of JLNU-301 at different scan rates.

Figure S32. CV curves of JLNU-302 at different scan rates.

Figure S33. The C_{dl} plots for JLNU-301, and JLNU-302 at 1.0 M KOH.

Figure S34. The ECSA for JLNU-301, and JLNU-302 in 1.0 M KOH.

Figure S35. CV curves of JLNU-301 at different scan rates.

Figure S36. CV curves of JLNU-302 at different scan rates.

Figure S37. The C_{dl} plots for JLNU-301, and JLNU-302 at 0.5 M H_2SO_4 .

Figure S38. The ECSA plots for JLNU-301, and JLNU-302 at 0.5 M H_2SO_4 .

Figure S39. CV curves of JLNU-301 at different scan rates.

Figure S40. CV curves of JLNU-302 at different scan rates.

Figure S41. The C_{dl} plots for JLNU-301, and JLNU-302 at 1.0 M PBS.

Figure S42. The ECSA plots for JLNU-301, and JLNU-302 at 1.0 M PBS.

Figure S43. The Faraday efficiency for JLNU-301 in 1.0 M KOH.

Figure S44. The Faraday efficiency for JLNU-302 in 1.0 M KOH.

Figure S45. The Faraday efficiency for JLNU-301 in 0.5 M H₂SO₄.

Figure S46. The Faraday efficiency for JLNU-302 in 0.5 M H₂SO₄.

Figure S47. The Faraday efficiency for JLNU-302 in 1.0 M PBS.

Figure S48. The Faraday efficiency for JLNU-302 in 1.0 M PBS

Section S8: Unit cell parameters and fractional atomic coordinates

Space group		P6/M (1	No. 175)		
Calculated unit cell		a = b = 39.9400 Å, c = 3.4967 Å,			
		$\alpha = \beta = 90^{\circ} \gamma = 120^{\circ}$			
Measured unit cell		a = b = 38.9714 Å, $c = 3.4973$ Å,			
		$\alpha = \beta = 90^{\circ} \gamma = 120^{\circ}$			
Pawley refinement		$R\omega p = 2.70\%$ a	$R\omega p = 2.70\%$ and $Rp = 1.87\%$		
Atom	X	у	Z		
C1	0.3551	0.6489	1		
N2	0.37265	0.68831	1		
C3	0.37864	0.62968	1		
C4	0.41934	0.65185	1		
C5	0.44169	0.63365	1		
C6	0.42369	0.5931	1		
C7	0.38292	0.57081	1		
C8	0.3606	0.58902	1		
N9	0.44741	0.57536	1		
C10	0.43319	0.53804	1		
C11	0.45859	0.52116	1		
C12	0.499	0.54352	1		
C13	0.48635	0.48112	1		
S14	0.43964	0.47144	1		
H15	0.43419	0.68493	1		
H16	0.47477	0.65188	1		
H17	0.36792	0.53772	1		
H18	0.32751	0.5708	1		
H19	0.40028	0.51826	1		
H20	0.51378	0.5766 1			

Table S1. Unit cell parameters and fractional atomic coordinates for JLNU-301 calculated on the basis of staggered **hcb** net.

Table S2. Unit cell parameters and fractional atomic coordinates for JLNU-302 calculated on the basis of staggered **hcb** net.

Space group	<i>P</i> 6/M (No. 175)
Calculated unit call	a = b = 39.7190 Å, c = 3.5506 Å,
	$\alpha=\beta=90^\circ\;\gamma=120^\circ$
Maagurad unit call	a = b = 38.9714 Å, c = 3.4973 Å,
Measured unit cell	$\alpha=\beta=90^\circ\;\gamma=120^\circ$
Pawley refinement	$R\omega p = 1.13\%$ and $Rp = 0.85\%$

Atom	X	у	Z
C1	0.50575	0.48649	1
C2	0.48175	0.45002	1
C3	0.49915	0.43058	1
C4	0.53592	0.45289	1
C5	0.56149	0.43981	1
N6	0.5506	0.40574	1
C7	0.57464	0.39178	1
C8	0.56038	0.35457	1
C9	0.58314	0.34011	1
C10	0.62052	0.36272	1
C11	0.63482	0.40003	1
C12	0.61208	0.41451	1
C13	0.6445	0.34745	1
N14	0.68071	0.36943	1
S15	0.45002	0.50233	1
H16	0.45114	0.43556	1
H17	0.483	0.39998	1
H18	0.59159	0.45972	1
H19	0.53001	0.336	1
H20	0.57134	0.30975	1
H21	0.66516	0.41875	1
H22	0.62389	0.44488	1

Section S9: Comparison of HER performance with other

electrocatalyst.

		Overpotential 10 mA cm ⁻² (mV)		
Catalyst -	Alkaline 1.0 M KOH	Acidic 0.5 M H ₂ SO ₄	Netural 1.0 M PBS	- Reference
JLNU-301	136	189	282	This work
JLNU-302	91	151	320	This work
FeS/Fe ₃ C@N-S-C-800	446	174	798 (0.1 M PBS)	5
C-Fe,Co-COF	330	280	280	6
12%Ni@TPP-CB[6]	—	250		7
SB-PORPy	_	380 (5 mA cm ⁻²)	_	8
Fe ₂ P@Fe ₄ N@C-800		232		9
TpPAM		250		10
FeTPP@NiTPP/NF	170	_		11
TiCP-PCP	—	142	—	12
N-HCNF-2-1000	—	243		13
1"-NP		260 (1.0 M HClO ₄)		14
CTF@MoS ₂ -5	—	93	—	15
TQ-CMP	—	170	—	16
CoCOP	—	121	—	17
Pt@CTF-1	_	111		18
BPT-COF		142		19
CoP-2ph-CMP-800	360	_	—	20
NiCoFeP/C	149	_	—	21
Ni@NC ₆ -600	180	_	—	22

 Table S3. Comparison of HER performance of JLNU-COFs with other electrocatalyst.

Section S10. References

- E. Skúlason, V. Tripkovic, M. E. Björketun, S. Gudmundsdóttir, G. Karlberg, J. Rossmeisl, T. Bligaard, H. Jónsson and J. K. Nørskov, *J. Phys. Chem. C*, **2010**, 114, 18182-18197.
- [2] M. Chhetri, S. Maitra, H. Chakraborty, U. V. Waghmare, C. N. R. Rao, *Energy Environ. Sci.* 2016, 9, 95-101.
- [3] W. Sheng, A. Bivens M. Myint, Z. Zhuang, R. Forest, Q. Fang, J. Chen, Y. Yan, *Energy Environ. Sci.* 2014, 7, 1719-1724.
- [4] F. Rosalbino, S. Delsante, G. Borzone, E. Angelini, Int. J. Hydrogen Energy 2008, 33, 6696–6703.
- [5] T. Kong, X. Fan, A. Kong, Z. Zhou, X. Zhang, Y. Shan, Adv. Funct. Mater. 2018, 28, 1803973.
- [6] D. Wu, Q. Xu, J. Qian, X. Li, Y. Sun. Chem. Eur. J. 2019, 25, 3105-3111.
- [7] A. Khaligh, Y. Sheidaei, D. Tuncel, ACS Appl. Energy Mater. 2021, 4, 3535-3543.
- [8] S. Bhunia, S. K. Das, R. Jana, S. C. Peter, S. Bhattacharya, M. Addicoat, A. Bhaumik, A. Pradhan, ACS Appl. Mater. Interfaces. 2017, 9, 23843-23851.
- [9] X. Fan, F. Kong, A. Kong, A. Chen, Z. Zhou, Y. Shan, ACS Appl. Mater. Interfaces, 2017, 9, 32840-32850.
- [10] B. C. Patra, S. Khilari, R. N. Manna, S. Mondal, D. Pradhan, A. Pradhan, A. Bhaumilk, ACS Catal. 2017, 7, 6120-6127.
- [11] S. Yuan, L. Cui, X. He, W. Zhang, T. Asefa, Int. J. Hydrog. 2020, 45, 28860-28869.
- [12] A. Wang, L. Cheng, X. Shen, W. Zhu, L. Li, Dyes Pigm. 2020, 181, 108568.
- [13] Y. Zheng, S. Chen, H. Song, H. Guo, K. A. I. Zhang, C. Zhang, T. Liu, Nanoscale 2020, 12, 14441-14447.
- [14] C. Yang, S. Tao, N. Huang, X. Zhang, J. Duan, R. Makiura, S. Maenosono, ACS Appl. Nano Mater. 2020, 3, 5481-5488.
- [15] S. Qiao, B. Zhang, Q. Li, Z. Li, W. Wang, J. Zhao, X. Zhang, Y. Hu, ChemSusChem. 2019, 12, 5032-5040.
- [16] W. Wang, Y. Zhang, L. Chen, H. Chen, S. Hu, Q. Li, H. Liu, S. Qiao, *Polym. Chem.* 2021, 12, 650-659.

- [17] A. Wang, L. Cheng, W. Zhao, X. Shen, W. Zhu, J. Colloid Interface Sci. 2020, 579, 598-606.
- [18] M. Siebels, C. Schlüsener, J. Thomas, Y. Xiao, X. Yang and C. Janiak, J. Mater. Chem. A, 2019, 7, 11934-11943.
- [19] J. Chen, Y. Bai, Y. Liu, M. Liu, X. Wang, S. Shang, W. Gao, C. Du, Y. Qiao, J. Dong, Y. Liu, Angew. Chem. Int. Ed. 2021, doi.org/10.1002/anie.202113067.
- [20] H. Jia, Y. Yao, Y. Gao, D. Lu and P. Du, Chem. Commun. 2016, 52, 13483-13486.
- [21] X. Wei, Y. Zhang, H. He, L. Peng, S. Xiao, S. Yao, P. Xiao, Chem. Commun. 2019, 55, 10896-10899.
- [22] N. Cheng, N. Wang, L. Ren, G. Casillas-Garcia, N. Liu, Y. Liu, X. Xu, W. Hao, S. X. Dou,
 Y. Du, *Carbon*, 2020, 163, 178-185.