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Figure S1. Determination of optical gap of polymers via Tauc plot.(a) P3MEEMT (b) P3APPT (c) P3AAPT (d) P3PAAT. Dash lines are guide 
for the eye.
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Figure S2. Organic electrochemical transistor, OECT, transfer curve of P3PAAT in (a) 100 mmol/L KCl(aq) and (b) 100 mmol/L KPF6(aq). Channel 
width/length = 4000 µm/10 µm. See main text for notation of polymer structure. Drain voltage, VD = -0.6 V. Drain current, ID. Gate voltage, 
VG. Gate current, IG.

Figure S3. Determination of OECT figure of merit μC* (µ carrier mobility and C* volumetric capacitance) of reduced-oxygen-content side chain 
polymers in 100 mmol/L KPF6(aq) (a) P3APPT (b) P3AAPT (C) P3PAAT and in 100 mmol/L KCl(aq) (d) P3APPT (e) P3AAPT. Each data point 
represents one transistor device. See main text for notation of polymer structure.
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Figure S4. OECT output curves of reduced-oxygen-content side chain polymers in 100 mmol/L KPF6(aq) of (a) P3APPT (b) P3AAPT (C) 
P3PAAT and in 100 mmol/L KCl(aq) (d) P3APPT (e) P3AAPT. Channel width/length = 800 µm/10 µm.

Figure S5. OECT output curve of poly(3-{[2-(2-methoxyethoxy)ethoxy]methyl}thiophene-2,5-diyl) (P3MEEMT) in 100 mmol/L KCl(aq) obtained 
from Flagg et al.1
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Figure S6. Determination of threshold voltage (VT) of reduced-oxygen-content side chain polymers in 100 mmol/L KPF6(aq) (a) P3APPT (b) 
P3AAPT (C) P3PAAT and in 100 mmol/L KCl(aq) (d) P3APPT (e) P3AAPT. Channel width/length = 4000 µm/10 µm. Grey dash lines are guide 
for the eye.

Figure S7. Determination of VT of reduced-oxygen-content side chain polymers in 100 mmol/L KTFSI(aq) (a) P3APPT (b) P3AAPT. Channel 
width/length = 2000 µm/10 µm. Grey dash lines are guide for the eye.
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Figure S8. Determination of VT of P3MEEMT in (a) 100 mmol/L KCl(aq) and (b) 100 mmol/L KPF6 obtained from Flagg et al.1 Grey dash lines 
are guide for the eye.
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Figure S9. Example Nyquist plots of (a)(b)P3MEEMT (c)(d) P3APPT (e)(f) P3AAPT (g)(h) P3PAAT in 100 mmol/L KCl(aq) (left) and 100 mmol/L 
KPF6(aq) (right), respectively.
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Figure S10. Example Bode plots of (a)(b)P3MEEMT (c)(d) P3APPT (e)(f) P3AAPT (g)(h) P3PAAT in 100 mmol/L KCl(aq) (left) and 100 mmol/L 
KPF6(aq) (right), respectively.
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Figure S11. Example Nyquist plot (left) and Bode plot (right) of (a)P3APPT (b) P3AAPT in 100 mmol/L KTFSI(aq).

Figure S12. Charge injection in polymer films during cyclic voltammetry (CV) scans in (a) 100 mmol/L KCl(aq) and (b) 100 mmol/L KPF6(aq). 
Black dash lines are guide for the eye.

S10



Figure S13. Volumetric capacitance (via EIS) and charge injected in polymer films (via coulometry). Charge injected in the film was 
normalized by polymer film thickness

.

Figure S14. Water contact angle measurement images. Error bars represent standard error of the mean.

Figure S15. OECT mobility of polymers in 100 mmol/L KCl(aq) and 100 mmol/L KPF6(aq). Dash lines are guide for the eye. OECT mobility was 
derived from dividing μC* by C* with error propagation. Error bar represents standard error of mean.
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Figure S16. Spectroelectrochemistry of (a) P3MEEMT (b) P3APPT (c) P3AAPT (d) P3PAAT in 100 mmol/L KCl(aq) electrolyte upon doping. 
Doping potential = 0.0 V, 0.1 V, 0.2 V, 0.3 V, 0.4 V, 0.5 V, 0.6 V, 0.7 V (vs Ag/AgCl). Black circle indicates the isosbestic point. Only P3APPT 
and P3AAPT show vibronic progression feature.
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Figure S17. Spectroelectrochemistry of (a) P3MEEMT (b) P3APPT (c) P3AAPT (d) P3PAAT in 100 mmol/L KPF6(aq) electrolyte upon doping. 
Doping potential = 0.0 V, 0.1 V, 0.2 V, 0.3 V, 0.4 V, 0.5 V, 0.6 V, 0.7 V (vs Ag/AgCl). 
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Figure S18. Comparison of polaron and π-π* peak absorbance change upon doping in 100 mmol/L KCl(aq) and KPF6(aq) (a) P3MEEMT (b) 
P3APPT (c) P3AAPT and (d) P3PAAT.
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Figure S19. π-π* peak absorbance change over time during doping in (a) KCl(aq) (b) KPF6(aq) and dedoping in (c) KCl(aq) (d) KPF6(aq). Dash lines 
represent the fitting results.
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Figure S20. Atomic force microscopy (AFM) topography images of four polymers in three different states: neat, doped and after three 
cycles of doping and dedoping. Polymer films were deposited on fluorine-doped tin oxide (FTO) glass substrate.

Figure S21. Roughness of neat polymer films, doped polymer films (with KPF6), and polymer films doped and dedoped for three cycles with 
KPF6. At least four different regions of the film were scanned. Error bars represent standard deviation.
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Table S1. VT and C* results of P3APPT and P3AAPT in 100 mmol/L KTFSI(aq)

C* VT

(F/cm3) (V)

P3APPT 143.2  9.4± -0.14  ±
0.01

P3AAPT 107.5  6.5± -0.11  ±
0.02

Table S2. Polythiophene derivatives with isosbestic point observed in spectroelectrochemistry

Polymer Electrolyte References

P3HHT KCl 2

P3MEET NaCl 3

PTHS-TMA+-co-P3HT 70:30 mol NaCl 4

PTHS-TMA+-co-P3HT 51:49 mol NaCl 4

PTHS-TMA+-co-P3HT 23:77 mol NaCl 4

P3HT Polymetric 
Ionic Liquid

5

P3APPT KCl This work
P3AAPT KCl This work
P3PAAT KCl This work

Conversion of CPE to Capacitor.

Eq S1 shows the impedance form of a constant phase element (CPE).  is the angular frequency. Y0 and 𝜔
n are the characteristic parameters of the CPE. A CPE is an imperfect capacitor with n value between 0 
and 1. A CPE with n equals to 1 represents an ideal capacitor. Eq S2 shows the impedance form of a 

capacitor. We applied Eq S3 to convert Y0 to an equivalent capacitor. is the frequency where the 𝜔 ''
𝑚𝑎𝑥 

imaginary part of impedance has its maximum.6,7

(Eq S1)
𝑍𝐶𝑃𝐸 =  

1

𝑌0 (𝑖𝜔)𝑛

(Eq S2)
𝑍𝐶 =  

1

𝐶 (𝑖𝜔)1
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 (Eq S3)𝐶 =  𝑌0 (𝜔 ''
𝑚𝑎𝑥)𝑛 ‒ 1
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