Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supplemental Information

Impact of Varying Side Chain Structure on Organic Electrochemical Transistor Performance: A Series of Oligoethylene Glycol-substituted Polythiophenes

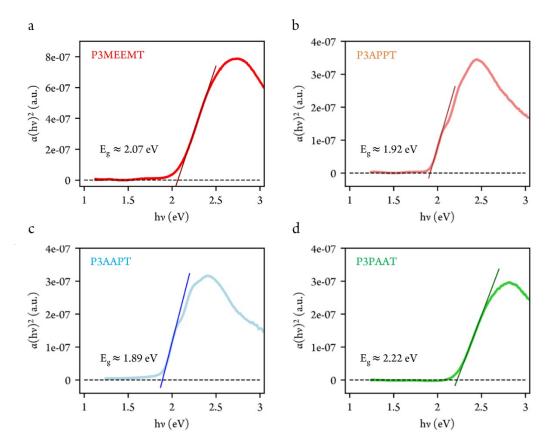
Shinya E. Chen,^a Lucas Q. Flagg,^{b†} Jonathan W. Onorato,^{c†} Lee J. Richter,^b Jiajie Guo,^a Christine K. Luscombe,^{acde}* David S. Ginger^{ad}*

^a ~ Molecular Engineering and Science Institute, University of Washington, Seattle, WA 98195, United States.

^b ~ Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States.

^c ~ Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, United States.

^d ~ Department of Chemistry, University of Washington, Seattle, WA 98195, United States.


^e ~ Current Address: pi-Conjugated Polymers Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan.

⁺ These two authors contributed equally to the work.

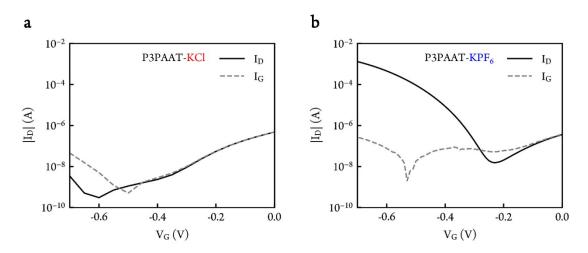
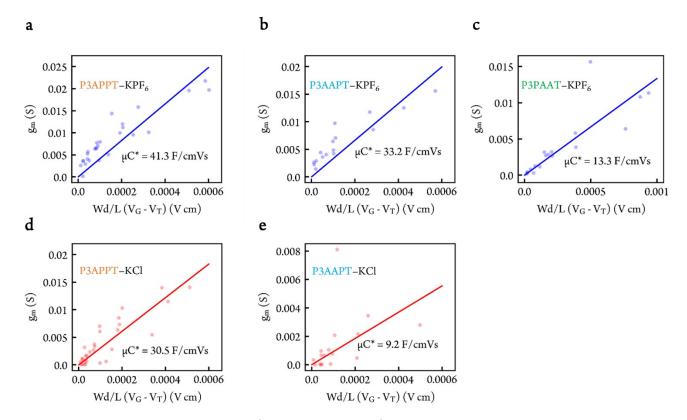
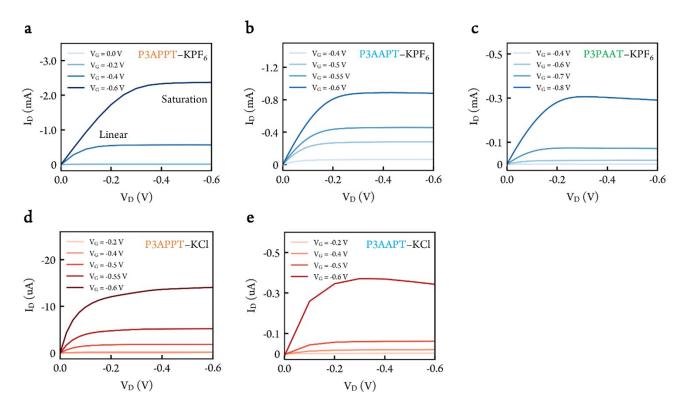
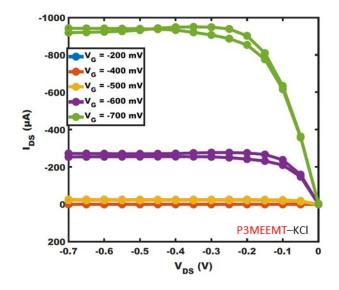
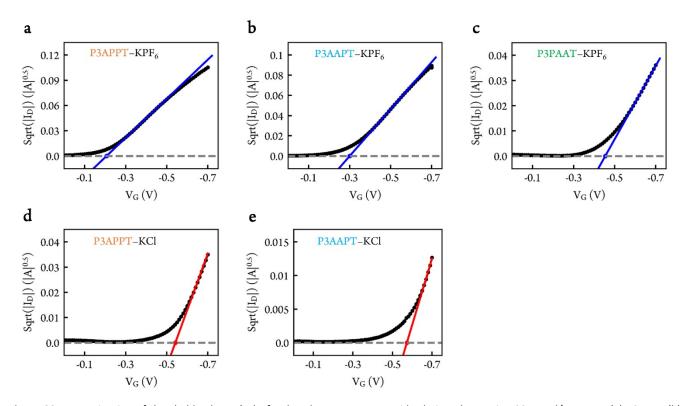

* Corresponding Author. E-mail <u>christine.luscombe@oist.jp</u>, <u>dginger@uw.edu</u>

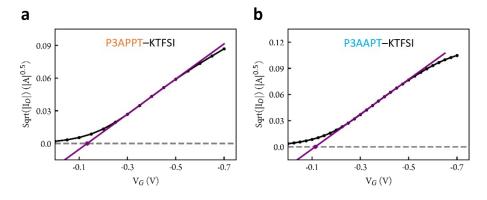
TABLE OF CONTENTS:

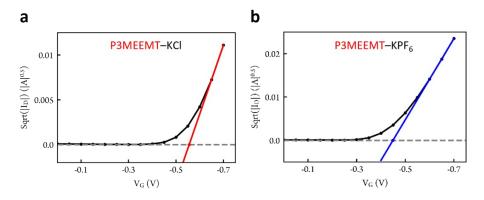

1.	Figure S1: Determination of optical gap via Tauc plot	S3
2.	Figure S2: OECT transfer curve of P3PAAT in KCl _(aq) and KPF _{6(aq)}	S4
3.	Figure S3: Determination of μC^* of reduced-oxygen-content side chain polymers	S4
4.	Figure S4: OECT output curves of reduced-oxygen-content side chain polymer	S5
5.	Figure S5: OECT output curves of P3MEEMT	S5
6.	Figure S6: Determination of V_T of reduced-oxygen-content side chain polymers	S6
7.	Figure S7 : Determination of V_T of polymers in KTFSI _(aq)	S6
8.	Figure S8 : Determination of V_T of P3MEEMT	S7
9.	Figure S9: Example Nyquist plots of polymers in $KCI_{(aq)}$ and $KPF_{6(aq)}$	S8
10.	Figure S10: Example Bode plots of polymers in KCl _(aq) and KPF _{6(aq)}	S9
11.	Figure S11: Example Nyquist and Bode plots of polymers in KTFSI _(aq)	S10
12.	Figure S12: Charge accumulation in polymer films during CV scans	S10
13.	Figure S13: Volumetric capacitance and charge injected in polymer films	S11
14.	Figure S14: Water contact angle measurement images	S11
15.	Figure S15: OECT mobility of polymers in $KCl_{(aq)}$ and $KPF_{6(aq)}$	S11
16.	Figure S16: Spectroelectrochemistry of polymers in KCl (aq)	S12
17.	Figure S17: Spectroelectrochemistry of polymers in KPF _{6(aq)}	S13
18.	Figure S18 : Comparison of polaron and π - π^* peak absorbance change in solutions	S14
19.	Figure S19: π - π^* peak absorbance change during doping and dedoping	S15
20.	Figure S20: AFM topography images of polymers	S16
21.	Figure S21: Roughness comparison of polymers	S16
22.	Table S1: V_T and C^* results of P3APPT and P3AAPT in KTFSI _(aq)	S17
23.	Table S2: Polythiophene derivatives with isosbestic point in UV-Vis during doping	S17
24.	Equation S1, S2 and S3: Conversion of CPE to capacitor	S17
25.	References	S18

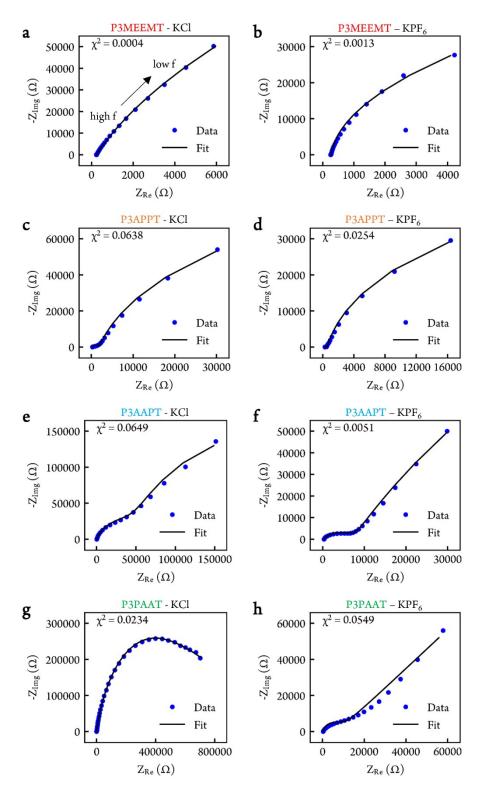

Figure S1. Determination of optical gap of polymers via Tauc plot.(a) P3MEEMT (b) P3APPT (c) P3AAPT (d) P3PAAT. Dash lines are guide for the eye.


Figure S2. Organic electrochemical transistor, OECT, transfer curve of P3PAAT in (a) 100 mmol/L KCl_(aq) and (b) 100 mmol/L KPF_{6(aq)}. Channel width/length = 4000 μ m/10 μ m. See main text for notation of polymer structure. Drain voltage, V_D = -0.6 V. Drain current, I_D. Gate voltage, V_G. Gate current, I_G.


Figure S3. Determination of OECT figure of merit μC^* (μ carrier mobility and C^* volumetric capacitance) of reduced-oxygen-content side chain polymers in 100 mmol/L KPF_{6(aq)} (a) P3APPT (b) P3AAPT (C) P3PAAT and in 100 mmol/L KCl_(aq) (d) P3APPT (e) P3AAPT. Each data point represents one transistor device. See main text for notation of polymer structure.


Figure S4. OECT output curves of reduced-oxygen-content side chain polymers in 100 mmol/L KPF_{6(aq)} of (a) P3APPT (b) P3AAPT (C) P3PAAT and in 100 mmol/L KCl_(aq) (d) P3APPT (e) P3AAPT. Channel width/length = $800 \mu m/10 \mu m$.


Figure S5. OECT output curve of poly(3-{[2-(2-methoxyethoxy)ethoxy]methyl}thiophene-2,5-diyl) (P3MEEMT) in 100 mmol/L KCl_(aq) obtained from Flagg et al.¹


Figure S6. Determination of threshold voltage (V_T) of reduced-oxygen-content side chain polymers in 100 mmol/L KPF_{6(aq)} (a) P3APPT (b) P3AAPT (C) P3PAAT and in 100 mmol/L KCl_(aq) (d) P3APPT (e) P3AAPT. Channel width/length = 4000 μ m/10 μ m. Grey dash lines are guide for the eye.

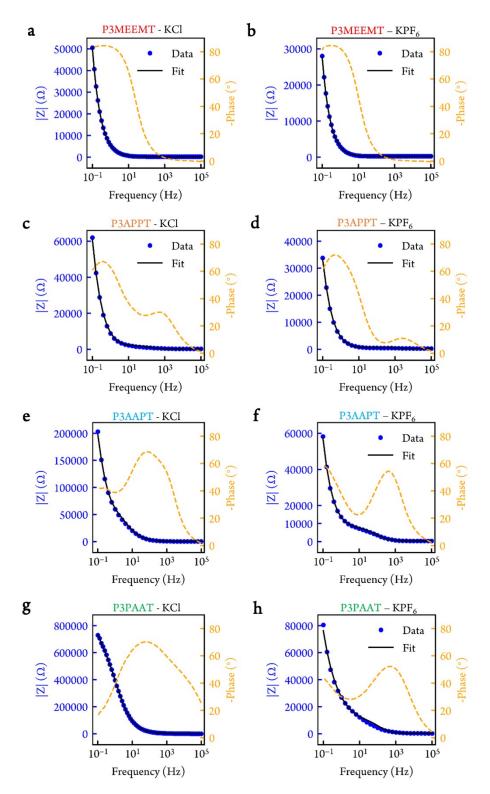

Figure S7. Determination of V_{τ} of reduced-oxygen-content side chain polymers in 100 mmol/L KTFSI_(aq) (a) P3APPT (b) P3AAPT. Channel width/length = 2000 μ m/10 μ m. Grey dash lines are guide for the eye.

Figure S8. Determination of V_T of P3MEEMT in (a) 100 mmol/L KCl_(aq) and (b) 100 mmol/L KPF₆ obtained from Flagg et al.¹ Grey dash lines are guide for the eye.

Figure S9. Example Nyquist plots of (a)(b)P3MEEMT (c)(d) P3APPT (e)(f) P3AAPT (g)(h) P3PAAT in 100 mmol/L KCl_(aq) (left) and 100 mmol/L KPF_{6(aq)} (right), respectively.

Figure S10. Example Bode plots of (a)(b)P3MEEMT (c)(d) P3APPT (e)(f) P3AAPT (g)(h) P3PAAT in 100 mmol/L KCl_(aq) (left) and 100 mmol/L KPF_{6(aq)} (right), respectively.

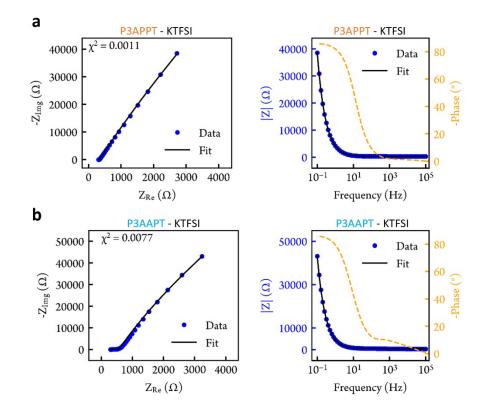
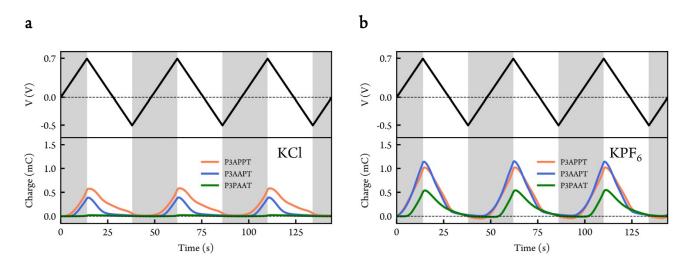
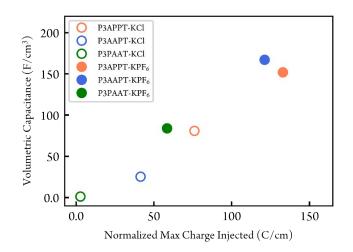
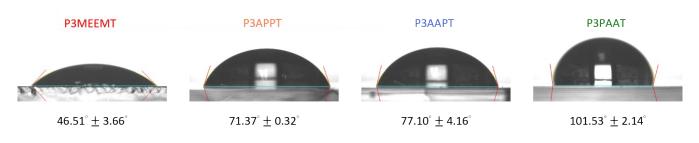
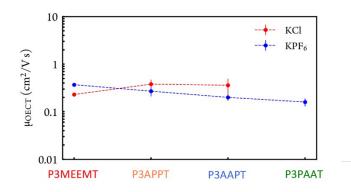
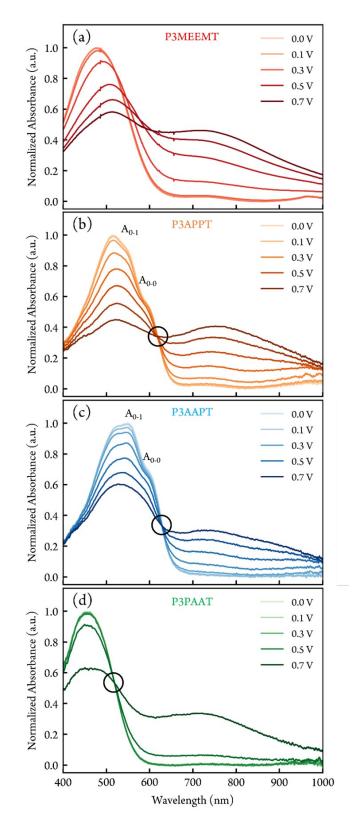
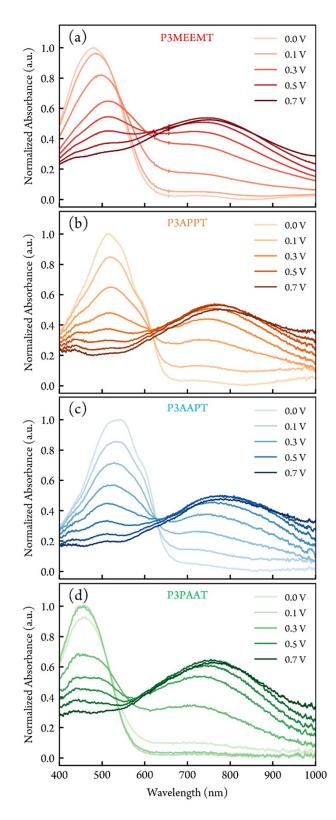




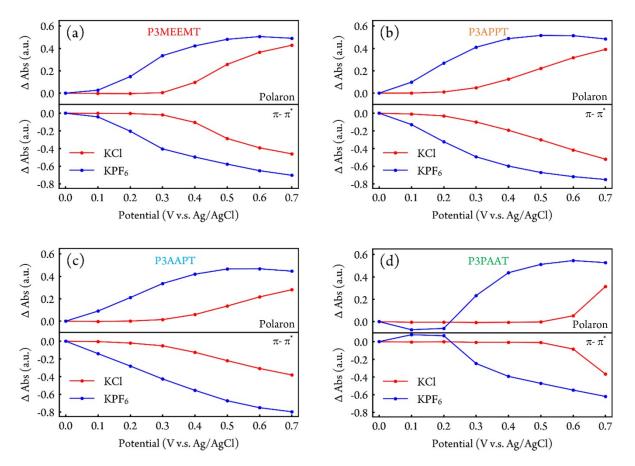
Figure S11. Example Nyquist plot (left) and Bode plot (right) of (a)P3APPT (b) P3AAPT in 100 mmol/L KTFSI(aq).

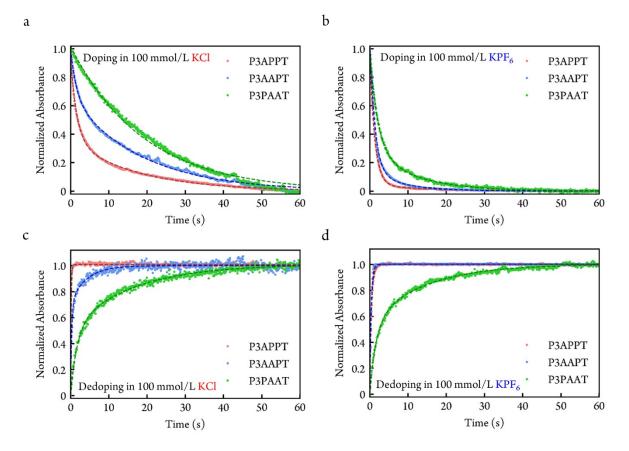
Figure S12. Charge injection in polymer films during cyclic voltammetry (CV) scans in (a) 100 mmol/L KCl_(aq) and (b) 100 mmol/L KPF_{6(aq)}. Black dash lines are guide for the eye.

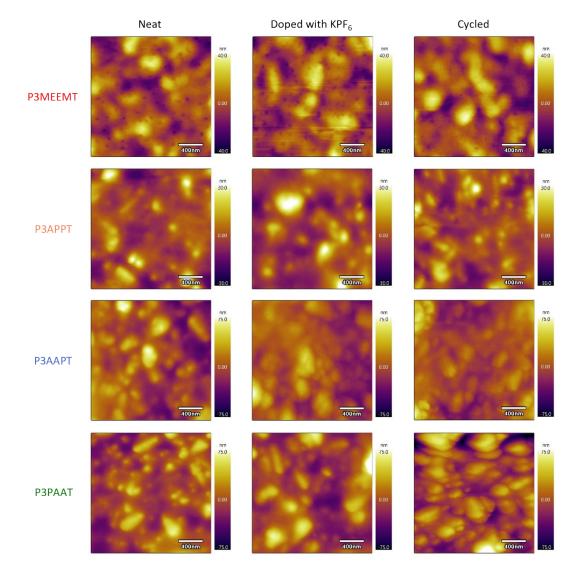
Figure S13. Volumetric capacitance (via EIS) and charge injected in polymer films (via coulometry). Charge injected in the film was normalized by polymer film thickness


Figure S14. Water contact angle measurement images. Error bars represent standard error of the mean.


Figure S15. OECT mobility of polymers in 100 mmol/L $KCl_{(aq)}$ and 100 mmol/L $KPF_{6(aq)}$. Dash lines are guide for the eye. OECT mobility was derived from dividing μC^* by C^* with error propagation. Error bar represents standard error of mean.


Figure S16. Spectroelectrochemistry of (a) P3MEEMT (b) P3APPT (c) P3AAPT (d) P3PAAT in 100 mmol/L KCl_(aq) electrolyte upon doping. Doping potential = 0.0 V, 0.1 V, 0.2 V, 0.3 V, 0.4 V, 0.5 V, 0.6 V, 0.7 V (vs Ag/AgCl). Black circle indicates the isosbestic point. Only P3APPT and P3AAPT show vibronic progression feature.


Figure S17. Spectroelectrochemistry of (a) P3MEEMT (b) P3APPT (c) P3AAPT (d) P3PAAT in 100 mmol/L KPF_{6(aq)} electrolyte upon doping. Doping potential = 0.0 V, 0.1 V, 0.2 V, 0.3 V, 0.4 V, 0.5 V, 0.6 V, 0.7 V (vs Ag/AgCl).

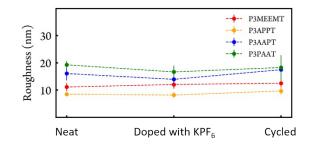

Figure S18. Comparison of polaron and π - π^* peak absorbance change upon doping in 100 mmol/L KCl_(aq) and KPF_{6(aq)} (a) P3MEEMT (b) P3APPT (c) P3AAPT and (d) P3PAAT.

Figure S19. π - π^* peak absorbance change over time during doping in (a) $KCl_{(aq)}$ (b) $KPF_{6(aq)}$ and dedoping in (c) $KCl_{(aq)}$ (d) $KPF_{6(aq)}$. Dash lines represent the fitting results.

Figure S20. Atomic force microscopy (AFM) topography images of four polymers in three different states: neat, doped and after three cycles of doping and dedoping. Polymer films were deposited on fluorine-doped tin oxide (FTO) glass substrate.

Figure S21. Roughness of neat polymer films, doped polymer films (with KPF₆), and polymer films doped and dedoped for three cycles with KPF₆. At least four different regions of the film were scanned. Error bars represent standard deviation.

	C*	V _T
	(F/cm ³)	(V)
РЗАРРТ	143.2 ± 9.4	-0.14 ±
	145.2 - 9.4	0.01
РЗААРТ	107.5 ± 6.5	-0.11 ±
		0.02

Table S1. V_T and C^* results of P3APPT and P3AAPT in 100 mmol/L KTFSI_(aq)

Table S2. Polythiophene derivatives with isosbestic point observed in spectroelectrochemistry

Polymer	Electrolyte	References
РЗННТ	КСІ	2
P3MEET	NaCl	3
PTHS-TMA+-co-P3HT 70:30 mol	NaCl	4
PTHS-TMA+-co-P3HT 51:49 mol	NaCl	4
PTHS-TMA+-co-P3HT 23:77 mol	NaCl	4
РЗНТ	Polymetric Ionic Liquid	5
РЗАРРТ	КСІ	This work
РЗААРТ	KCI	This work
РЗРААТ	КСІ	This work

Conversion of CPE to Capacitor.

Eq S1 shows the impedance form of a constant phase element (CPE). ω is the angular frequency. Y₀ and n are the characteristic parameters of the CPE. A CPE is an imperfect capacitor with n value between 0 and 1. A CPE with n equals to 1 represents an ideal capacitor. Eq S2 shows the impedance form of a

capacitor. We applied Eq S3 to convert Y_0 to an equivalent capacitor. ω_{max} is the frequency where the imaginary part of impedance has its maximum.^{6,7}

$$Z_{CPE} = \frac{1}{Y_0 (i\omega)^n}$$
 (Eq S1)

$$Z_{C} = \frac{1}{C (i\omega)^{1}}$$
 (Eq S2)

$$C = Y_0 (\omega_{max})^{n-1}$$
 (Eq S3)

References

- 1 L. Q. Flagg, C. G. Bischak, J. W. Onorato, R. B. Rashid, C. K. Luscombe and D. S. Ginger, *J. Am. Chem. Soc.*, 2019, **141**, 4345–4354.
- 2 T. Nicolini, J. Surgailis, A. Savva, A. D. Scaccabarozzi, R. Nakar, D. Thuau, G. Wantz, L. J. Richter, O. Dautel, G. Hadziioannou and N. Stingelin, *Adv. Mater.*, 2020, **33**, 2005723.
- 3 P. Schmode, A. Savva, R. Kahl, D. Ohayon, F. Meichsner, O. Dolynchuk, T. Thurn-Albrecht, S. Inal and M. Thelakkat, *ACS Appl. Mater. Interfaces*, 2020, **12**, 13029–13039.
- P. Schmode, D. Ohayon, P. M. Reichstein, A. Savva, S. Inal and M. Thelakkat, *Chem. Mater.*, 2019, 31, 5286–5295.
- 5 E. M. Thomas, M. A. Brady, H. Nakayama, B. C. Popere, R. A. Segalman and M. L. Chabinyc, *Adv. Funct. Mater.*, 2018, **28**, 1803687.
- 6 C. H. Hsu and F. Mansfeld, *Corrosion*, 2001, **57**, 747–748.
- 7 B. Y. Chang, J. Electrochem. Sci. Technol., 2020, **11**, 318–321.