Supporting Information

Interfacial engineering in amorphous/ crystalline heterogeneous

nanostructures as a highly effective battery-type electrode for hybrid

supercapacitors

Dongyan Gao^a, Yifan Pan^a, Jinhe Wei^a, Dandan Han^{a,*}, Pengcheng Xu^a, Yen Wei^{b,*}, Liucheng

Mao^b, Xiaohong Yin^c

^a College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
 ^b Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, China
 ^c School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China

*Corresponding author. *E-mail address:* handandan@jlict.edu.cn (D.H.); weiyen@tsinghua.edu.cn (Y.W.)

Figure S1. (a1, a2) SEM images of CC/NiCo₂O₄@NiCo-P-2 and (b1, b2) SEM images of CC/NiCo₂O₄@NiCo-P-8.

Figure S2. (a1, a2) SEM images of CC/NiCo₂O₄@Ni-P-5 and (b1, b2) SEM images of CC/NiCo₂O₄@Co-P-5.

Figure S3. TEM images of NiCo₂O₄ nanowires.

Figure S4. XRD patterns of amorphous CC/NiCo-P-5 nanosheets with different deposition time. Obviously, when the deposition time is 5 cycles, there is no diffraction peaks except for the diffraction peaks of carbon cloth. In order to eliminate the influence of the weak signal caused by the amount of the sample, the deposition time was extended to 50 cycles. It can be noted that some weak diffraction peaks are corresponding to carbon cloth, which is attributed to the reason that the amorphous phosphate encapsulates the carbon cloth (the diffraction peak intensity is reduced by this thickened package).

Figure S5. EDX spectrum of CC/NiCo₂O₄@NiCo-P-5

Figure S6. TGA analysis curve of the CC/NiCo-P-5 with a rising rate of 10° C·min⁻¹ from 25 to 800 °C at N₂ atmosphere. A weight loss was about 12% from 25 to 150 °C, owing to the decomposition of physically absorbed water and some residual alcohol on the surface of the sample. A weight loss was about 5.5% from 300 to 370 °C, which attributed to the decomposition of structural water. After 400 °C, the mass remained basically unchanged. Therefore, TGA data, coincident with the results mentioned above (EDX, XPS and so on), further indicate that the molecular formula of amorphous substance can be calculated as NiCo-(HPO₄)₂·H₂O.

Figure S7. Comparison of electrochemical performance between CC/NiCo₂O₄@NiCo-P-8, CC/NiCo₂O₄@NiCo-P-5 and CC/NiCo₂O₄@NiCo-P-2 electrodes: (a) CV curves at 10 mV·s⁻¹. (b) GCD curves at $1A \cdot g^{-1}$; (c) Nyquist plot of the three electrodes; (d) Specific capacity at different specific currents.

Figure S8. (a) CV curves and (b) GCD curves of CC/NiCo₂O₄@NiCo-P-2. (a) CV curves and

(b) GCD curves of CC/NiCo₂O₄@NiCo-P-8.

Figure S9. Nyquist plot of CC/NiCo₂O₄@NiCo-P-5, CC/NiCo-P-5 and CC/NiCo₂O₄.

Figure S10. (a) CV curves and (b) GCD curves of CC/NiCo₂O₄@Ni-P-5. (c) Nyquist plot in the frequency of 10 kHz to 0.01 Hz. (d) specific capacities of CC/NiCo₂O₄@Ni-P-5.

Figure S11. (a) CV curves and (b) GCD curves of CC/NiCo₂O₄@Co-P-5. (c) Nyquist plot in the frequency of 10 kHz to 0.01 Hz. (d) specific capacities of CC/NiCo₂O₄@Co-P-5.

Figure S12. (a) CV curves and (b) GCD curves of AC HSC device.

Figure S13. Nyquist plots of the CC/NiCo₂O₄@NiCo-P-5//AC HSC device; the insets show the high-frequency range and equivalent circuit used to simulate the Nyquist plots.

Figure S14. SEM images of CC/NiCo₂O₄@NiCo-P-5 after cycling

Figure S15. Optimized atomic structure models of (a) $NiCo_2O_4$, (b) NiCo-P and (c) $NiCo_2O_4$ @NiCo-P

 Table S1. Comparison of electrochemical performances of the amorphous electrode material

 with previous reports.

Materials	Electrolyte	Capacity	Reference
amorphous cobalt hydrogen	2М КОН	176.82 C/g (1 A/g)	J. Power Sources
phosphate	20011011		449 (2020) 227487
amorphous Ni-Co double hydroxide	2М КОН	768.15 C/g (1 A/g)	Nanoscale
			13 (2021) 8562-8574
amorphous Co-Ni pyrophosphates	ЗМ КОН	692.45 C/g (1.5 A/g)	ACS Appl. Mater. Interfaces
			8 (2016) 23114-23121
amorphous Mn ₃ O ₄	1M NaOH	298 C/g (1 mA/cm ²)	ACS Appl. Mater. Interfaces
1 5 4			11 (2019) 39394
Amorphous Vanadium Oxides	5 M LiCl	346 C/g (0.625 A/g)	Chem. Eng. J.
1			403 (2021) 126380
amorphous Ni-Co-Fe hydroxide	4M KOH	805 C/g (6.4 A/g)	Adv. Energy Mater.
			5 (2015) 1401767
amorphous Co ₃ O ₄	1M KOH	226.1 C/g (1.3 A/g)	Chem. Eng. J.
1 5 4		8(10118)	396 (2020) 125364
amorphous nickel borate	6M KOH	496.44 C/g (0.2	J. Mater. Chem. A.
1	mV/s)	mV/s)	6 (2018) 19689-19695
amorphous NiCo(HPO ₄) ₂ ·H ₂ O	2М КОН	688 C/g (1 A/g)	This work

Table S2. Comparison of electrochemical performances of the amorphous/crystallineheterostructure electrode material with previous reports.

Materials	Electrolyte	Capacity	Reference
amorphous MoS _x @crystalline FeCo ₂ O ₄	ЗМ КОН	978 C/g (1 A/g)	Chem. Eng. J. 417 (2021) 127927
crystalline Ag@amorphous nickel-cobalt hydroxide	6М КОН	718.1 C/g (1 A/g)	Adv. Mater. Interfaces 6 (2019) 1900858
crystalline Ni ₂ P ₂ O ₇ @amorphous NiCo-OH	2М КОН	35.36 C/g (3 mA/cm ²)	Small 10 (2019) 1901145
crystalline Ni_3S_4 @amorphous MoS_2	6М КОН	576.36 C/g (2 A/g)	Small 11 (2015) 3694-3702
crystalline/amorphous $Fe_2O_{3-\delta}$	1 M LiOH	630.9 C/g (6 A/g)	Nano Energy 45 (2018) 390-397
crystalline/amorphous Co ₃ S ₄	2М КОН	815.4 C/g (5 mA/cm ²)	J. Mater. Chem. A. 6 (2018) 21350-21359
crystalline ZIF-67@amorphous ZIF	6М КОН	470.7 C/g (1 A/g)	J. Mater. Sci. 55 (2020) 16360- 16373
amorphous Ni-Co-S@crystalline MnS	PVA/KOH	1093 C/g (1 A/g)	Chem. Eng. J. 416 (2021) 129500
NiCo ₂ O ₄ @NiCo(HPO ₄) ₂ ·H ₂ O	2М КОН	1254 C/g (1 A/g)	This work