
High Cycle Stability of Zn Anode Boosted by An Artificial Electronic-

Ionic Mixed Conductor Coating Layer 

Weijia Fana, Zhenwen Suna, Ye Yuana, Xinhai Yuana, Chaolin Youa, Qinghong Huanga, Jilei Yea, Lijun 
Fu*a, Veniamin Kondratievb, Yuping Wu*a

a State Key Laboratory of Materials-Oriented Chemical Engineering, College of Energy Science and 
Engineering, and College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu 
Province, China

b Department of Electrochemistry, Institute of Chemistry, Saint Petersburg State University, 7/9 
Universitetskaya nab., St. Petersburg, 199034, Russi

Experimental Section

Preparation of the zinc anode

PVDF+AB@Zn: The slurry comprising Acidified carbon black (AB) (70wt%), and polyvinylidene fluoride (30wt%) in 

N-methyl-2-pyrrolidone was cast onto zinc foil. Then the as-prepared electrode was placed in a vacuum for 12 

hours.

Alg-Zn@Zn: The sodium alginate (AR grade, Aladdin) was dissolved in deionized water at a weight ratio of 1:100 

followed by stirring for 12 h. Then, the homogeneous sodium alginate solution was cast onto zinc foil, and then 

soaked in a solution of 2 M ZnSO4 to achieve Alg-Zn@Zn.

Alg-Zn+AB@Zn: The Sodium alginate, AB is dissolved in water with the weight ratio of 3:7:300. The remaining 

steps are the same as Alg-Zn@Zn.

Preparation of V2O5
1

1.5 g commercial V2O5 powder was mixed with 50 mL 2 M NaCl solution under stirring for 72 h at room 

temperature. The product was vacuum filtered and washed with ultrapure water and ethanol. Finally, the 

product was dried in at 70 °C for 12 h.

Characterization

The crystallographic structure was analyzed by X-ray diffractometer (XRD, D/MAX-IIA, Rigaku) with Cu-Kα 

radiation (λ = 0.15406 nm) at a scanning angle (2θ) range of 10° to 90°. The morphology and microstructure 

observation of the samples was measured by scanning electron microscopy (SEM, XL-70, Philips) and optical 

microscope (YM520R). 
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Electrochemical measurements

symmetrical batteries were tested using a glass fiber separator with Zn and Improved anodes (PVDF+AB@Zn, 

Alg-Zn@Zn and Alg-Zn+AB@Zn) in a CR2032 coin battery and assembled in the air. 2 M ZnSO4 aqueous solution 

was used as the electrolyte. The electrolyte content is 60 μL.

After that, full cells were fabricated with Alg-Zn+AB@Zn and Activated Carbon (AC)/ V2O5. AC was mixed with 

Carbon Black (CB), and Polytetrafluoroethylene (PTFE) at a weight ratio of 8: 1: 1, and then the slurry dried under 

infrared baking lamp for 1 h. Then, the mixture was pressed onto stainless steel mesh. The mass of cathode is 

about 4 mg cm-2.

The V2O5, Carbon Black, and PTFE binder were grinded at a mass ration of 7:2:1. The viscous mixture dried 

under infrared baking lamp for 1 h. Then, the mixture was pressed onto stainless steel mesh. The mass of 

cathode is about 4 ~ 8 mg cm-2.

The electrochemical performance was implemented by a battery test system (LAND) at room temperature. 

The Cyclic voltammetry (CV) was recorded on an electrochemical workstation (CHI660E). Electrochemical 

Impedance Spectroscopy (EIS) was measured by an impedance/gain-phase analyzer (Solartron analytical 1260A) 

and an electrochemical test analyzer (Solartron analytical 1287A).

Fig. S1 The cross-sectional optical images of a) Zn, b) PVDF+AB@Zn, c) Alg-Zn@Zn and d) Alg-Zn+AB@Zn. The 

coating layers were immersed in the electrolyte to observe their thickness in the status of cycling.

The varied Alg-Zn coating thickness as shown in Fig. S1c and S1d is due to the extensible property of Alg-Zn, the 

thinnest part of coating layer is measured as the thickness of coating layer.



Fig. S2 FT-IR spectra of Alg-Zn@Zn and Alg-Zn+AB@Zn.

Fig. S3 Characterizations of the anode soaked in 2 M ZnSO4 electrolyte for 7 days. SEM images of a) Zn, b) 

PVDF+AB@Zn, c) Alg-Zn@Zn and d) Alg-Zn+AB@Zn. e) XRD patterns.



Fig. S4 EIS of a) Zn, b) PVDF+AB@Zn, c) Alg-Zn@Zn and d) Alg-Zn+AB@Zn before and after standing. The 

equivalent circuit to fit the ElS data, where Rs is series resistance; Ri is solid state electrolyte interface layer 

resistance between electrolyte and electrode; Rct is charge-transfer resistance; and CPE is constant-phase 

element.

Table 1 The corresponding resistance of symmetrical cells.

Rs Ri Rct

Zn 0.95 12.36 59.06

Zn-1 h 1.87 15.89 282.8

PVDF+AB@Zn 2.116 0.77 183.9

PVDF+AB@Zn-1 h 1.05 7.05 288

Alg-Zn@Zn 1.12 9.38 70.04

Alg-Zn@Zn-1 h 1.99 26.96 273

Alg-Zn+AB@Zn 1.23 16.75 47.14

Alg-Zn+AB@Zn- 1 h 1.384 32.98 231.2



Fig. S5 Deep stripping/plating abilities of Zn, PVDF+AB@Zn, Alg-Zn@Zn and Alg-Zn+AB@Zn with areal capacities 

varying from 2 to 10 mA h cm-2 at a constant current density of 1 mA cm-2.



Fig. S6 Rate performances at current densities from 1 to 10 mA cm−2.

Fig. S7 Morphology and structure of different Zn anodes after cycled in symmetrical cells at a current density of 1 

mA cm-2 and areal capacity of 1 mAh cm-2. a) SEM images of bare Zn before cycling, e) after 20 cycles and i) short 

circuit. b) SEM image of PVDF+AB@Zn before cycling, f) after 20 cycles and j) after 50 cycles. c) SEM image of Alg-

Zn@Zn before cycling, g) after 20 cycles and k) after 50 cycles. d) SEM image of Alg-Zn+AB@Zn before cycling, h) 

after 20 cycles and l) after 50 cycles. The scale bar in Fig. S6a-6l represents 50 μm.



Fig. S8 In situ optical observation results of the Zn deposition morphologies on a) Zn, b) PVDF+AB@Zn, c) Alg-

Zn@Zn, and d) Alg-Zn+AB@Zn at 0.1 mA cm-1.
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Fig. S9 Evaluation of Zn/AC full cells with bare Zn and Alg-Zn+AB@Zn as anodes. a) CV curves of bare Zn/AC and 

Alg-Zn+AB@Zn/AC full cells at 10 mV s-1, the current density is calculated based on the mass of AC. b) rate 

capability of bare Zn/AC and Alg-Zn+AB@Zn/AC full cells ranging from 0.3 to 20 A g-1, c) Cycling stability of bare 

Zn/AC and Alg-Zn+AB@Zn/AC full cells at 5 A g-1. 



Fig. S10 Characterizations of the anode. SEM images recovered from Zn/AC full cells of a) Zn, c) Alg-Zn+AB@Zn 

after 200 plating/striping cycles at 5 A g-1; b) Zn and d) Alg-Zn+AB@Zn after 1000 plating/striping cycles at 10 A g-

1. e) XRD patterns of Zn/Zn symmetrical cells after 1000 plating/striping cycles at 10 A g-1.

a b

Fig. S11 Evaluation of Zn/V2O5 full celles with bare Zn and Alg-Zn+AB@Zn as anodes. a) CV images of bare Zn/ 

V2O5 and Alg-Zn+AB@Zn/V2O5 full cells at 1 mV s-1, the current density is calculated based on the mass of V2O5; b) 

rate capability of bare Zn/ V2O5 and Alg-Zn+AB@Zn/ V2O5 full batteries ranging from 1 to 10 A g-1.



Table. S2 Performance comparison of galvanostatic Zn stripping/plating of the reported Zn/Zn symmetrical cells.

Strategies
Current 

density (mA 
cm-2)

Areal capacity 
Operation (mAh 

cm-2)

Over 
potential 

(mV)

Operation 
cycles (h) Reference

Zn@C 2.5 1 25 300 2

Zn/rGO 10 2 400 200 3

CM@CuO@Zn 1 1 11 340 4

PEDOT:PSS/GS@Zn 1 1 500 5

Zn|In 1 1 54 500 6

60alucone@Zn 1 1 46.1 498 7

Zn–G 0.1 0.1 200 8

Zn/CNT 2 2 27 100 9

ZF@CB-NFC 0.5 0.5 160 400 10

PA6/Zn(TfO)2@Zn 0.5 1 450 11

Zn (002) 1 1 38 500 12

Janus Separator (MOF/rGO 
Interlayers) 2 1 89 500 13

Alg-Zn+AB@Zn 1 1 46 500 This work

Table. S3 Performance comparison of the reported Zn/AC cells.

Strategies
Current density

(A g-1)

Operation 
cycles

Capacity 
retention Reference

Zn@ZnF2 2 5000 92.8% 14

poly(4,4′-TDP) 8 2000 71% 15

Janus Separator (vertical 
graphene) 5 5000 93.7% 16

10 10000 ~100%
Alg-Zn+AB@Zn

20  16000 ~100%
This work
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