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S1 Information on Contents of Raw Data Files

The training set data and all calculated properties for the library are given in the files train-
ing_set.csv and redox_library.csv, respectively. These files, along with the GP model and the
scripts used to generate the plots in the manuscript are provided at the following Github repository:

https://github.com/Tabor-Research-Group/redox_mol_screening.
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S2 Top-10% Lowest Reduction Potential Molecules
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Fig. S1: Top-10% Lowest Reduction Potential Molecules with their GP-calibrated reduction
potential (E,.q) and Boltzmann-averaged electronic coupling (H,,). Raw data provided in

csv format.
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S3 Further Details on Gaussian Process Regression Model
Training

We took 69 molecules with their experimental reduction potential®' 58 as the target of the training
set for our GP model. The feature variables are constituted of the semi-empirical GFN2-xTBS?
electron affinity and reduced feature vectors after feature selection by the gradient boosted decision
trees for Morgan fingerprints®'? composed of 4096-bit vectors using a radius of 3 and AUTOCORR
3D descriptors.S!! We tested different combinations of the threshold value of the lowest feature
importance to keep and found using “0.25%median value” for the Morgan fingerprints and “median
value” for the AUTOCORR 3D would include enough features while not deteriorating the perfor-
mance of the GP model with higher dimensionality. GP regression is a non-parametric model that
can make predictions by incorporating prior knowledge with kernel functions. We constructed the
kernel function as a sum of a radial basis function kernel for GFN2-xTB, molecular fingerprints,
and 3D descriptors, respectively. We obtained the GP model for calibrating GFN2-xTB electron
affinity by optimizing the hyperparameters through the maximization of the log marginal likelihood

with the L-BFGS algorithm.
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Fig. S2: GFN2-xTB electron affinity versus GP-calibrated electron affinity using core finger-
prints (left) and full fingerprints (right) for GP calibrations. Each color represents a type of
derivative from each core molecule. The experimental points (which the model will correctly
predict if it is included in the training set) are indicated with crosses. The results on the
right indicate that the model that includes all structural fingerprint information (rather than
just the core fingerprint information) overemphasizes the importance of functional groups
and predicts an unrealistically low reduction potential for modestly functionalized template
molecules, such as quinoxalines.
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Fig. S3: Cumulative Feature Importance, which starts (on the left) from the feature dimen-
sion with the highest importance for Morgan fingerprint and AUTOCORR 3D descriptor.
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Fig. S4: Visualization of atoms and bonds in a molecules that correspond to the bits with top
importance (Fig. S3) along with their indices. Highlighted colors in blue indicate the central
atom in the environment, yellow highlights indicate aromatic atoms, and gray indicates
aliphatic ring atoms. Star signs and bonds drawn in light gray represent wildcard atoms and
bonds that are not directly part of the given bit.
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S4 Electronic Coupling Sampling

S4.1 Random Dimer Structure Generation

First, we place two monomers optimized at the GFN2-xTB level of theory completed overlapped
in the origin (Note that the inclusion of the implicit solvent model during optimization also avoids
the situation where two charged monomers repel each other). From this initial configuration, a
random rotation followed by a random translation was performed for one of the monomers. The
maximum translation for a monomer is the diameter of a molecule defined by the longest distance
between a pair of heavy atoms within the monomer. This distance was constrained to the dimers
having a closest heavy atom distances between two monomers within 2.5 to 3.5 A. An end-to-end

example of the dimer generation procedure is also provided in the Github repository.

S4.2 Sampling Size

It is impossible to sample the continuous space of dimer configurations—taking 10 points in each
dimension for all the six degrees of freedom between the monomers (under a rigid body approx-
imation) would require a sampling of one million configurations. The following procedure was
implemented for sampling the dimer configurations. During the first step of the sampling of dimer
structures, each structure was sampled randomly. We make an assumption that the electronic
coupling from these sampled geometries follows the normal distribution. Though the statistics
may not exactly reflect this distribution, we found it too computationally expensive to perform a
Boltzmann-weighted sampling. Thus, we made the random samplings for the electronic coupling
of each molecule with a margin of error = 0.04 eV (taken to be approximately chemical accuracy),
under the 95% confidence interval. Through statistical sampling arguments, we can approximate

the sample size to reach the required margin of error under a certain confidence interval by

Zx0 \2
N> ( )
~\MOFE
where N is the sample size, z is the z-score under the desired confidence interval, ¢ is the population

standard deviation, and MOE is the margin of error. A pilot study was conducted to to estimate
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o by calculating electronic coupling on 30 random dimer structures generated from each conformer
of all top candidates. In this case, we found that the standard deviation of the coupling for each
molecule is between 0.006 to 0.2 eV with a mean of 0.07 eV. We made a conservative decision by
assuming the population standard deviation is 0.2 eV. Within this model, we need N = 100 to

reach our required criteria.

Fig. S5: Three cases of dimer structures with lower energies interaction energies than the
parent unfunctionalized template molecules. Here, we highlight cases that have higher or
lower Boltzmann-averaged electronic coupling than the template molecules. Overlapped ph-
thalimide derivative dimer with higher electronic coupling (left). Staggered benzothiadiazole
derivative dimer with lower electronic coupling (middle). Phthalimide derivative dimer sta-
bilized by hydrogen bonding (yellow dashed line) with lower electronic coupling (right).
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