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1. Synthesis of large area nickel-cobalt phosphate thin film

For potentiostatic electrodeposition, the conventional three-electrode system is used as an
electrochemical cell consisting of flexible stainless steel (SS) as a working electrode, graphite pot
as a counter electrode, and saturated calomel electrode (SCE) (saturated KCl solution) as a
reference electrode. The schematic presentation and the actual setup of the large area thin film
deposition assembly are presented in Fig. S1 (a) and (b), respectively. The photograph of the

deposited large area of nickel-cobalt phosphate thin film is shown in Fig. S1 (c).
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Fig. S1 (a) The schematic presentation, (b) photograph of large-area thin film deposition assembly,
and (c) photograph of deposited large area (5x5 cm?) nickel-cobalt phosphate thin film.
2. Synthesis of reduced graphene oxide (rGO)

The modified Hummer’s method was employed for the preparation of graphene oxide,S!
then reduced hydrothermally. The rGO electrode was prepared by adding active material (rGO)
(75%), carbon black (20%), and polyvinylidene fluoride (5%) in N-methyl 2-pyrrolidone (NMP)
solvent. The prepared slurry was coated on stainless steel substrate (1x1 cm?), heated at 333 K for

an hour, and used for further study.
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3. Synthesis of PVA-KOH gel electrolyte

The PVA-KOH gel electrolyte was prepared for the fabrication of a solid-state device. The
3 g of polyvinyl alcohol (PVA) was dissolved in 30 ml of double-distilled water (DDW) at 363 K
under vigorous stirring. The solution is continuously stirred up to complete dissolution of polymer
in water and clear appearance of the solution. After that 10 ml of 1 M KOH solution was added to
the PVA solution with continuous stirring and obtained a homogeneous, dense, and clear
solution.8? The prepared transparent and viscous PVA-KOH was used as a gel electrolyte for the
solid-state device fabrication.
4. Fabrication of solid-state hybrid asymmetric supercapacitor (SHAS) device

The SHAS device was fabricated by comprising E-NCP4 thin film as cathode and rGO
electrode as anode with PVA-KOH as gel electrolyte and separator. The SHAS device fabrication
steps are illustrated in Fig. S2 (a-d). In the first step, the large area flexible electrodes are prepared
as shown in Fig. S2 (a) and used as electrodes to fabricate the SHAS device. Then, the gel
electrolyte was painted on each electrode material and dried at room temperature (shown in Fig.
S2 (b)). After drying, the edges of electrodes are sealed with plastic tape, as illustrated in Fig. S2
(c), to avoid a short circuit. Again, the gel electrolyte was painted on the surface of active material
for proper contact between electrode and electrolyte. Then, the electrodes were packed together
using transparent plastic strips. Later, the prepared device is pressed under hydraulic pressure of
0.5 tons for 12h. Photographs of prepared flexible SHAS device are shown in Fig. S2 (d) and the
schematic presentation in Fig. S2 (e). The electrochemical performance of SHAS device was tested

using ZIVE MP1 electrochemical workstation.
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Fig. S2 The digital photographs of (a) E-NCP4 (electrodeposited) and rGO thin film electrodes on
flexible stainless steel substrate, (b) electrodes painted by PVA-KOH gel electrolyte, (c) sealed
edges with tape, and (d) fabricated flexible solid-state device. (¢) Schematic presentation of

flexible solid-state device.
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5. Formulae for calculations

5.1 For three electrode system:
Specific capacitance is derived from GCD analysis as follows,
I x At
S owx v (F g (S1)
where I, At, w and AV are current density, discharging time, mass of active material, and potential

window, respectively. Furthermore, the specific capacity of electrode from the GCD analysis is

measured as follows,

_ I X At
w (Cgh (52)

Capacitive and diffusion-controlled processes are contributed to total charge storage of
electrode, and according to Power’s law, CV current is dependent on scan rate and can be
expressed as follows,

ip(v) = av, (S3)

where, lP, V aand b are represent the peak current, scan rate, and adjustable parameters.
The modified Power’s law is used for the calculation of respective current contribution

from the diffusion-controlled process (bulk battery) and pseudocapacitive process as given below,

1/2

L,=1 surfacev + Cbulkv (S4)

p surface + Ibulk =C
where I, Y, Cyuface?”” and CpyV'? represent the peak current density, scan rate, surface
pseudocapacitive process (Igymce) current contribution, and bulk process (Iyyx) current

contribution, respectively.

5.2 For two electrode system:
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The charges between the cathode and anode can be balanced for excellent electrochemical
results of hybrid asymmetric supercapacitor device by using the theory of mass balance as per the

following equation,

m, C_ XAV_
X AV

m__Cy (S5)

where, "(+ or-), AV (4 or- ), and Cltoro are the mass of active material (g), potential window
(V), and specific capacitance (F g!) of positive and negative electrode, respectively.

The two electrode system was used to study device performance, and its energy (E) and

power density (P) are calculated using following equations, respectively,

0.5 x C, x (AV)?
E =

3.6 (Whkg™) (S6)

p= E x 3.6
And At (kW kg1 (S7)

where C,, AV, and At represent specific capacitance, potential window, and discharging time of

device, respectively.
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Fig. S3 Graph of nickel-cobalt phosphate thin film thickness at different compositions of Ni:Co.
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Fig. S4 XRD patterns of nickel-cobalt phosphate powder samples (E-NCP1 to E-NCP7).
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Fig. S5 EDS spectra of nickel-cobalt phosphate thin film samples (a) E-NCP1, (b) E-NCP2, (¢) E-

NCP3, (d) E-NCP4, (¢) E-NCP5, (f) E-NCP6 and (g) E-NCP7.
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Fig. S6 Nitrogen adsorption/desorption isotherm and pore size distribution of (a, b) E-NCP1, (c,

d) E-NCP4 and (e, f) E-NCP7 sample.
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Fig. S7 The CV curves at various scan rates from 1-20 mV s-! for (a) E-NCPI, (b) E-NCP2, (c) E-

NCP3, (d) E-NCPS5, (e) E-NCP6 and (f) E-NCP7 electrode.
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Fig. S8 Plot of log (current density, A g!) versus log (scan rate, mV s™!) for (a) E-NCPI, (b) E-
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Fig. S10 The GCD curves of (a) E-NCPI1, (b) E-NCP4 and (c) E-NCP7 electrode at 1.5 A g’!

current density.
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Fig. S14 The Nyquist plots of E-NCP4 electrode before

equivalent circuit).
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The XRD patterns and Raman spectra of GO and rGO samples are shown in Fig. S15 (a)
and (b), respectively. The XRD and Raman results confirm the successful conversion of GO to
rGO by hydrothermal reduction.

The quasi-rectangular shape of CV curves (Fig. S15 (c¢)) and nearly linear charge-discharge
curves (Fig. S15 (d)) confirms EDLC based capacitive nature of rGO electrode. The specific
capacitance of 200 F g'! is obtained for rGO electrode at 2 A g'! current density (Fig. S15 (e)). The
Nyquist plot of GO electrode is presented in Fig. S15 (f) with a fitted circuit. The smaller values

of Rg and R are responsible for higher electrochemical performance of rGO electrode.
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Fig. S16 The CV curves of nickel-cobalt phosphate (E-NCP4) and rGO electrodes at 20 mV s-!

scan rate in 1 M KOH electrolyte.
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Fig. S17 (a) The CV curves and (b) GCD curves of E-NCP4//rGO AHAS device in different

potential windows.
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Table S1 Experimental and observed nickel and cobalt atomic ratio in nickel-cobalt phosphate thin

film samples (E-NCP1 to E-NCP7).

Sample Experimental | Observed ratio Obtained phase
name ratio (Ni:Co) (N1:Co)

E-NCP1 1:0 1:0 Ni;3(POy),.8H,0
E-NCP2 0.85:0.15 0.81:0.19 Ni, 43C00.57(PO4),.8H,0
E-NCP3 0.75:0.25 0.76:0.24 Ni; 28C00.72(PO4),.8H,0
E-NCP4 0.50:0.50 0.48:0.52 Nij 44C01.56(PO4),.8H,0
E-NCP5 0.25:0.75 0.30:0.70 Nig 9Co0,.1(POy),.8H,0
E-NCP6 0.15:0.85 0.09:0.91 Nig27C0,.73(PO4),.8H,0
E-NCP7 0:1 0:1 Co3(POy4),.8H,0
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Table S2 Comparison of supercapacitive performance of nickel-cobalt phosphate material with

reported literature data.

Sr. Material and Substrate | Method of | Electr | Capacitance | Stability | Ref.
No. morphology deposition | olyte (Fg')at at cycles
current
density (A g)
1. Niz;P,0s- Nickel Co- 6 M 1980 at 0.5 90.9%, 30
Co3P,04.8H,0 Foam precipitation | KOH 1000
(Nanoparticles)
2. CoNi,y(POy), Nickel Precipitatio | 2 M 630Cglatl 84.3%, 31
(Flowers) Foam n KOH 1000

3. Cog 4Ni; ¢P,O7 Nickel Hydrotherm | 3 M 1259 at 1.5 88.9%, 32
(Microplates) Foam al KOH 1000

4. NiCoPO, Nickel Co- 3iM 1132.5 atl 93%, 33
(Nanosheets) Foam precipitation | KOH 8000

5. Cog.86N12.14(PO4), Nickel Hydrotherm | 2 M 1409 at 0.25 - 34
(Nanospheres) Foam al KOH

6. NiCo,(POy), Nickel Microwave 3M 940.43 at 1 84.5%, 35
(Hollow shells) Foam assisted KOH 1000

7. | NiCo(POy)s/Graphe Nickel Hydrotherm | 1M 86.4 mAh g’! - 36

ne Foam (Flowers) Foam al KOH at 1

8. | Ni(Co)NH4PO,@rG Nickel Hydrotherm | 6 M 1451 at 1 125%, 37
O (Microplates) Foam al KOH 5000

9. ZIF-67-LDH- Nickel Solvotherm 6 M 1616 at 1 72.46%, 38

NiCoPOy Foam al KOH 2000
(Nanocages)
10. | (NH4)(Ni,Co)POy4-0. Nickel Hydrotherm | 6 M 1128 at 0.5 - 39
67H,0 (Microplates) Foam al KOH
11. | NaNip33Coq67PO4.H Nickel Microwave 1M 828 at 1 83.1%, 40
,O (Particles) Foam KOH 3000
12. KCog33Nig¢7 Nickel Hydrotherm 1M 1166 at 1.5 94%, 41
PO4.H,O Foam al KOH 1000
(Microplates)
13. | Cu/p-CuO/NiCo-P Copper | Electrodepo | 2M | 1768.5C g at 92%, 42
(Nanosheets) mesh sition KOH 2 10000
14. Ni1.38C01_62(PO4)2 Stainless Chemical 1M 1116 (446 C g 75.5%, 43
(Microflowers) Steel bath KOH Nat0.5 3000
deposition
15. NiCoP40;,/ Nickel Electrodepo | 2 M 883 Cyglatl - 44
(Nio_65C0().35)3(PO4)2 Foam sition KOH
(Nanosheets)
16. NiCoO, Nickel Solvotherm 3IM 923.2 at 2 - 73
(Nanoparticles) Foam al KOH
17. CoNi,S, Carbon | Electrodepo | 6 M | 995.8Cglat2 | 77.2%, 74

S25




(Nanospheres/Nanot | fiber cloth sition KOH 2000
ubes)
18. Ni-Co-S Ni Electrodepo | 6 M 1964 C g! at 71%, 75
(Nanosheets) nanowires sition KOH 2.5 2500
19. Ni-Co-S Ni Hydrotherm | 6 M 2116 C g'! at 71%, 76
(Nanoparticles) nanowires al KOH 0.725 2500
20. Ni;.44C0156(POy), Stainless | Electrodep 1M | 2228891 Cg 85%, This
(Microspheres) Steel osition KOH )at1.5 5000 work
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Table S3 Electrochemical impedance spectroscopic fitted circuit parameters for Nyquist plots of

E-NCP series electrodes.

Sample Name | R, (2 cm?) [ R (Q em?) [ Q (mF) n W (2 cm?)
E-NCP1 1.31 4.39 2.95 0.631 0.360
E-NCP2 1.44 11.19 0.422 0.695 0.233
E-NCP3 1.87 0.95 0.036 0.702 0.432
E-NCP4 1.47 0.2 9.449 0.771 0.222
E-NCP5 1.75 7.3 191.9 0.806 0.825
E-NCP6 1.33 8.6 229.5 0.842 0.009
E-NCP7 1.25 3.7 118.1 0.856 0.002
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Table S4 Electrochemical impedance spectroscopic fitted circuit parameters for Nyquist plots of

E-NCP4 electrode before and after 5000 GCD cyclic stability.

Sample R (2 ecm?) | Ry (2 cm?) | Q (mF) n W (2 cm?)
Before stability 1.47 0.2 9.44 0.771 0.222
After stability 1.48 0.48 23.3 0.671 0.364
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Table S5 Comparative literature study of nickel-cobalt phosphate material as a cathode based

asymmetric devices.

Sr. Positive electrode | Negative | Electr | Capacita | Energy | Power | Stability | Ref.
No. (cathode) electrode | olyte | nce (F g') | density | density | at cycles
(anode) at current | (Wh (W
density kg1) kg
(Agh
1. Ni3P,05-Co3P,0s. AC/NF 6 M 94 at 0.5 33.4 399 83%, 30
8H,O/NF KOH 5000
2. CoNiy(PO,),/NF Graphene | 2 M 103 at 1 32.2 377.6 - 31
/NF KOH
3. Coy.4Ni1; ¢P,O7/NF AC/NF 3iM 119 at 1 42.2 800 80%, 32
KOH 2000
4. NiCoPO4/NF AC/NF 3iM 162.8 at 1 32.5 600 80.4%, 33
KOH 5000
PVA- | 129.6at1 35.8 700 90.5%,
KOH 5000
5. | CopgeNiy14(PO4)./NF | AC/NF - 149.6 at 45.8 424 57.8%, 34
0.7 mA 2500
6. | NiCo(PO,);/Graphen | AC/NF IM | 45mAhg | 3438 377 95.5%, 37
¢ Foam/NF KOH 'at0.5 10000
7. ZIF-67-LDH- AC/NF | PVA- | 116.67at | 33.29 150 67.24%, 38
NiCoPO4/NF KOH 0.1 10000
8. (NHy) HPC/NF | 6 M | 88 at0.01 353 101 95.6%, 39
(N1,Co)PO4-0.67H,0 KOH 5000
/NF
9. NaNi 33C0¢.67PO4. Graphene 1M 95.52 at 29.85 374.95 | 76.9%, 40
H,O/NF /NF KOH 0.5 10000
10. KCoy33Nig 67 AC/NF IM | 227at1.5 | 80.64 1200 82%, 41
PO4.H,O/NF KOH 5000
11. Cu/p-CuO/NiCo-P 3DPG 2M 247.78 at 88.1 800.6 89%, 42
KOH 1 10000
12. | Ni;33C016(PO4),/SS | rGO/SS 1M 120 at 1.3 433 1000 80%, 43
KOH 4000
PVA- | 102at0.2 36.2 160 83.7%,
KOH 4000
13. NiCoP,40,,/ AC/NF 2M 119.4 at 3 54 2700 81%, 44
(Ni0.65C00.35)3(PO4)2/ KOH 10000
NF
14. CoNi,S4/CNF rGO- 6M 112 at4 35 3000 96.9%, 74
CNTs KOH 10000
15. Ni@Ni-Co- rGO- 6M 539 at 16.8 232.9 90.5%, 75
S/Graphite paper CNTs/ KOH 0.31 10000
Graphite
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paper
16. Ni@Ni-Co- rGO- 6M | 143Fcm? | 445 375 96.9%, 76
S/Graphite paper CNTs/Gr | KOH at0.5 A mWh mW 5000
aphite cm3 cm?3 cm
paper
17. | Ni1.44C0156(PO4)2/SS | rGO/SS 1M | 185at2.7 | 65.2 2200 97%, This
KOH 4000 work
PVA- | 90 at 0.4 32 320 88%,
KOH 4000
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