Supplementary Information

In Operando Identification of V⁴⁺-Site-Dependent Nitrogen

Reduction Reaction of VS_x

Rui Zhao, Xinyue Chi, Xiaoxuan Wang, Liang Zhao, Yixiang Zhou, Yuanyuan Xiong, Shuyun Yao, Shiyu Wang, Dewei Wang, Zhenzhen Fu, Zhiyu Yang, Yi-Ming Yan*

State Key Lab of Organic–Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029,

People's Republic of China

*Corresponding Author.

Email: bityanyiming@163.com

Tel (Fax): +86-10-64451521

Experimental Section

Materials

Sodium orthovanadate (Na₃VO₄·12H₂O) and thioacetamide (TAA, CH₃CSNH₂) were commercially available from Shanghai Chemical Reagent Co. Ltd. Ammonium metavanadate (NH₄VO₃) were from Shanghai Macklin Biochemical Co.Ltd. Hydrazine hydrate (N₂H₄·H₂O) and ethanol (C₂H₅OH) were purchased from Beijing Tongguang Fine Chemical Co., Ltd. Hydrochloric acid (HCl), salicylic acid (C₇H₆O₃, \geq 99.7%), ammonium chloride (NH₄Cl, 99.998%), pdimethylaminobenzaldehyde (p-C₉H₁₁NO, 99%), trisodium sodium citrate dehydrate (C₆H₅Na₃O₇·2H₂O, 99%), sodium nitroferricyanide dihydrate (C₅FeN₆Na₂O·2H₂O, 99%), sodium hypochlorite solution (NaClO, available chlorine 6-10%) were purchased from Beijing Chemical Corp. Nafion (5 wt%) was purchased from Sigma-Aldrich Chemical Reagent Co., Ltd. All the chemicals were used without further purification. Ultrapure Smart-S15 water (18.2 MΩ) was used in all experiments.

Preparation of VS_{2-x} and VS₂. 3 mmol Na₃VO₄·12H₂O and 15 mmol TAA powders were dissolved in 30 mL DI water in a glass jar, which was then stirred for 1 h to form a homogeneous solution and transferred to a 50 mL Teflon-lined autoclave. The autoclave was sealed and heated at 180 °C for 2 h. After it was cooled down to room temperature, a black precipitate was collected by centrifugation and washed several times with DI water and absolute ethanol, VS_{2-x} were produced. Then, the experiments proceed again with changing V source to NH₄VO₃, VS₂ were obtained.

Preparation of VS_{2-x} and VS₂ electrode. VS_{2-x} was prepared as following: First, 5 mg of VS_{2-x} catalyst and 20 μ L of Nafion solution (5 wt%) were dispersed in 980 μ L mixed solution contain

ethanol and H_2O (V : V = 2 : 1) by 1h sonication to form a homogeneous ink. Then 20 µL of the VS_{2-x} ink was loaded on a carbon paper (1 cm × 1 cm) and dried. The VS₂ was prepared by following the same method.

Characterizations. The X-ray diffraction (XRD, Rigaku D/MAX 2550) equipped with Cu Ka radiation ($\lambda = 1.54178$ Å) by scanning from $2\theta = 5$ to 90° was used to analyze crystalline structures. A field emission scanning electron microscopy (SEM, JEOL JSM-6700F) was used to analyze the surface morphology of samples. The high-resolution TEM, TEM images were recorded on a Zeiss Libra 200FE TEM operated at 200 kV. The chemical compositions of the materials were characterized by X-ray photoelectron spectroscopy (XPS, Physical Electronics 5400 ESCA). The surface area of the samples was estimated by method of Brunauer-Emmett-Teller (BET) was made by application of the Barrett-Joyner-Halenda (BJH) method to the adsorption data. The Raman spectrum was recorded on a HORIBA Raman microscope with a laser wavelength of 532 nm (LabRAM Aramis, HORIBA Jobin Yvon S.A.S, France) for surface characterization. The absorbance data of spectrophotometer were measured on UV-8000S UV-Vis spectrophotometer (Shanhai Metash Instruments Co., Ltd). The X-ray absorption spectra (XAS) including X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) of the samples at V K-edge (5477 eV were collected at the Singapore Synchrotron Light Source (SSLS) center, where a pair of channel-cut Si (111) crystals was used in the monochromator. The V K-edge XANES data were recorded in a transmission mode. V foil were used as references. The storage ring was working at the energy of 2.5 GeV with average electron current of below 200 mA. The acquired EXAFS data were extracted and processed according to the standard procedures using the ATHENA module implemented in the FEFIT software packages. The k^3 -weighted

Fourier transform (FT) of x(k) in R space was obtained over the range of 0-14.0 Å⁻¹ by applying a Besse window function.

Electrochemical Measurements. Before NRR measures, the Nafion membrane was pretreated by heating in H₂O₂ solution (3 wt%), 0.5 M H₂SO₄, and ultrapure water at 80°C for 2 h, respectively. Electrochemical measurements N₂ reduction experiments were carried out in a typical H-type electrolytic cell, which was separated by the Nafion 117 membrane. The electrochemical experiments were performed with a CHI 760E electrochemical analyzer (CH Instruments, Inc., Shanghai, China) using a standard three-electrode system including prepared VS_{2-x}/CP electrode, platinum gauze electrode and Ag/AgCl electrode serving as the working electrode, counter electrode and reference electrode, respectively. The potentials reported in this work were converted to RHE scale via calibration with the following equation: E (vs. RHE) = E (vs. Ag/AgCl) + 0.197 + 0.0591 × pH. For N₂ reduction experiments, the 0.1 M HCl electrolyte was purged with N₂ for 30 mins before the measurement. N₂ electrochemical reduction was conducted in N₂-saturated 0.1 M HCl solution. Before the controlled potential electrolysis for hours, N₂ was purged into HCl solution for at least 30 mins to remove residual air.

The LSV curves were conducted with the CHI 760e electrochemical workstation with scan rate of 10 mV s⁻¹. In 0.1 M HCl, the corresponding LSV curve was measured by purging 30 mins with Ar, and then purging N₂ for 30 minutes to measure the corresponding LSV curve. The impedance spectroscopy (EIS) measurements were tested by AC voltage with 5 mV amplitude in the frequency range of 10^5 Hz to 10^{-2} Hz under applied voltage ranging from 0 to 0.7 V vs. RHE. The potential step chronoamperometry measurement were measured at the potentials from the opencircuit voltage to the best reduction overpotential.

Determination of NH₃. Concentration of produced NH₃ was determined by the indophenol blue method. In detail, 2 mL post-tested solution was removed from the cathodic chamber, and then added into 2 mL 1.0 M NaOH solution containing $C_7H_6O_3$ and $C_6H_5Na_3O_7 \cdot 2H_2O$ (5 wt%), then added 1 mL NaClO (0.05 M) and 0.2 mL Na₂[Fe(NO)(CN)₅] $\cdot 2H_2O$ (1 wt%) aqueous solution in turn. After standing at room temperature for 2 h, the UV-Vis absorption spectrum was measured. The concentration-absorbance curves were calibrated using standard NH₄Cl solution (0.1 M HCl as mother solution) with a serious of concentrations. Typically, 100 µg mL⁻¹ NH₄Cl solution was prepared and diluted to 2 µg mL⁻¹. Then, 0.0, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0 and 1.2 mL NH4Cl solutions with concentration of 2 µg mL⁻¹ were poured into test tubes and separately diluted to 2 mL with 0.1 M HCl and the resulting concentrations of NH₄Cl in the solutions are 0.0, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0 and 1.2 µg mL⁻¹. The concentration of indophenol blue was determined using the absorbance at a wavelength of 655 nm. The fitting curve (y = 0.4202x + 0.0844, R² = 0.9949) shows good linear relation of absorbance value with NH₄Cl concentration by three times independent calibrations.

Determination of N₂H₄. The hydrazine present in the electrolyte was estimated via the method of Watt and Chrisp. A mixture of p-C₉H₁₁NO (5.99 g), HCI (concentrated, 30 mL) and C₂H₅OH (300 mL) was used as a color reagent. In detail, 2 mL electrolyte was removed from the electrochemical reaction vessel and added into 2 mL above prepared color reagent and stirring 15 mins at room temperature. The absorbance of the resulting solution was measured at 455 nm. The concentration absorbance curves were calibrated using standard N₂H₄·H₂O solution with a series of concentrations. The fitting curve (y = 1.0548x + 0.0102, $R^2 = 0.9998$) shows good linear relation of absorbance value with N₂H₄ concentration.

Calculations of NH₃ formation rate and Faradaic efficiency (FE). The rate of formation of NH₃ was calculated using the following equation:

$$V(\mu g h^{-1} m g_{cat}^{-1}) = \frac{17 \times c_{NH_4 Cl} \times V}{53.5 \times t \times m_{cat}}.$$

The FE was calculated according to the following equation:

$$FE = \frac{3 \times F \times c_{NH_4Cl} \times V \times 10^{-6}}{53.5 \times Q} \times 100\%$$

where ${}^{c_{NH_4Cl}}$ (µg mL⁻¹) is the measured concentration of NH₄Cl; V (mL) is the volume of electrolyte (in our work 30 mL); t (s) is the reduction reaction time; m_{cat} (mg) is the mass loading of catalyst on CP; F is Faraday constant (96500 C mol⁻¹); Q (C) is the quantity of applied charge/electricity.

Calculation details. Spin-polarized density functional theory (DFT) simulations were performed to calculate the adsorption of N₂ molecule using the Vienna ab initio simulation package (VASP).^{1,2} The Perdew-Burke-Ernzerhof (PBE) functional within the framework of generalized gradient approximation (GGA) was applied to describe the exchange–correlation interactions.^{3,4} DFT-D2 method was adopted to consider the van der Waals (vdW) interaction.⁵ For structural optimization, the Brillouin zone was sampled by $3\times3\times1$ k-points for plane-wave basis, together with an energy cutoff of 500 eV. All the atoms were allowed to relax until the residue forces on each atom were less than 0.02 eV/Å. The convergence criterions were set to 10-5 eV for total energy. In order to avoid interactions between periodic images, a vacuum space of 10 Å was applied to all calculations. The formation Gibbs free energy (Δ G) of the NRR intermediates is calculated as:

$$\Delta G = \Delta E_{ad} + \Delta Z P E - T \Delta S$$

Where ΔEad is the adsorption energy of NRR intermediates, ΔZPE is the change of zero-point energies, ΔZPE is the zero point energy difference, T is the temperature (T = 298.15K), and ΔS is the entropy changes. The entropy of gas molecules is taken from standard values.

Supplementary Figures

Fig S1. The BET measurement of VS_{2-x} (blue) and VS_2 (red).

Fig S2. (a) (b)The 50 nm scale TEM image of VS_{2-x} and the 50 nm scale TEM image of VS_2 .

Fig S3. (a) (b)The 2 nm scale HRTEM image of VS_{2-x} and the 2 nm scale HRTEM image of VS_2 .

Fig. S4. (a) (b)The SAED images of VS_{2-x} and VS_2 .

Fig S5. The HRTEM images of VS_{2-x} (a, b and c) and VS_2 (d).

Fig S6. Raman spectra of $\mathrm{VS}_{2\text{-}x}$ (blue) and VS_2 (red).

Fig S7. (a) LSV curves of VS_{2-x} at different atmospheres include N₂ (red) and Ar (black), (b) LSV curves of VS₂ at different atmospheres include N₂ (red) and Ar (black), (c) Chronoamperometry curves of VS_{2-x} at considered potentials, (d) LSV curves of VS_{2-x} (black) and VS₂ (red) at N₂ atmosphere, (e) HER performance of VS_{2-x} (blue) and VS₂ (red), (f) Chronoamperometry curves of VS₂ at considered potentials.

Fig S8. NH₄Cl of (a) the Uv-vis spectrum curves at a series of standard solutions, (b) the corresponding standard curve; N_2H_4 of (c) the Uv-vis spectrum curves at a series of standard solutions, (d) the corresponding standard curve; VS_{2-x} of (e) the NH₄Cl Uv-vis spectrum curves at given potentials, (f) the N_2H_4 Uv-vis spectrum curves at given potentials; VS_2 of (g) the NH₄Cl Uv-vis spectrum curves at corresponding potentials, (h) N_2H_4 Uv-vis spectrum curves at corresponding potentials, (i) the NH₄Cl Uv-vis spectrum curves of the NH₃ sources tests.

Fig S9. Ammonia sources tests of VS₂.

Fig S10. The cycling stability of VS_2 , the experiments were all tested at -0.3 V Vs. RHE.

Fig S11. the Absorbance of VS_{2-x} after 2 h electrolysis (blue) and VS_2 during 2-4 h electrolysis (red) at the same potential of -0.3 V vs. RHE.

Fig S12. The XPS pattern after 2 h electrolysis for VS₂.

Fig S13. the Raman spectra of VS_2 in the in-situ electrochemical cell before the electrolysis.

Fig S14. The in-site Raman spectrum.

Fig S15. Work function of VS (blue) and VS_2 (red).

Fig S16. (a) The in-situ Raman test results for VS_{2-x} , (b) The in-situ Raman test results for VS_2 in electrochemical cell without electrolysis.

Fig S17. The XPS pattern after 2 h electrolysis for VS_{2-x} .

Fig S18. The simulation results for VS (PDF#02-1242) (yellow) and VS₂ (36-1139) (grey).

Fig S19. The long-term stability i-t test curve of VS₂.

Fig S20. (a) The CV test of VS_{2-x} with a series of different scan rates range from 10 to 100 mV s⁻¹ (step: 10 mV s⁻¹), (b) The Cdl results for VS_{2-x} , (c) The CV test of VS_2 with a series of different scan rates range from 10 to 100 mV s⁻¹ (step: 10 mV s⁻¹), (d) The Cdl results for VS_2 .

Catalyst	Electrolyte	NH ₃ yield rate	FE/%	Reference
VS ₂	0.1 M HCl	41.21 μg mg _{cat} ⁻¹ h ⁻¹	35.52	This work
MoO ₂ @MoO ₃	0.05 M H ₂ SO ₄	60.9 µg mg ⁻¹ h ⁻¹	23.80	6
Zn ¹ N–C	0.1 M KOH	16.1 µg mg ⁻¹ h ⁻¹	11.80	7
NbTiO ₄ @NCNR- 1	0.01 M HCl	$58.13 \pm 8 \ \mu g \ mg^{-1} \\ {}^{1} \ h^{-1}$	$\begin{array}{c} 10.40 \pm \\ 1.40\% \end{array}$	8
Ag-Cu _{NS} /CP	0.1 M Na ₂ SO ₄	61.5 $\mu g m g_{cat}^{-1} h^{-1}$	20.90	9
np-MoSe ₂	0.1 M Na ₂ SO ₄	$30.83 \ \mu g \ mg^{-1} \ h^{-1}$	37.82	10
NC/Bi SAs/TiN/CC	0.1 M Na ₂ SO ₄	76.15 $\mu g m g_{cat}^{-1} h^{-1}$	24.60	11
Pt-HEX	0.1 M KOH	26.4 µg cm ⁻² h ⁻¹	1.80	12
FeMoPPc	0.1 M KOH	36.33 μg mg _{cat} ⁻¹ h ⁻¹	20.62	13
BNQDs@Nb ₂ CT _x	0.5 M LiClO ₄	66.3 µg mg ⁻¹ h ⁻¹	16.70	14
NiSb	0.1 M HCl	56.9 µg mg ⁻¹ h ⁻¹	48.00	15
TiO ₂	0.05 M H ₂ SO ₄ with 20 wt% PEG400	$1.07 \ \mu mol \ cm^{-2} \ h^{-1}$	32.13	16
Sb/Nb ₂ CT _x	0.5 M LiClO ₄	49.8 µg mg ⁻¹ h ⁻¹	27.3	17
1T"" MoS ₂	0.1 M Na ₂ SO ₄	9.09 µg mg ⁻¹ h ⁻¹	13.6	18
MXene/TiFeO _x - 700	0.05 M H ₂ SO ₄	21.9 $\mu g m g^{-1} h^{-1}$	25.44	19
MoS ₂ /NC-900	0.1 M Na ₂ SO ₄	36.1 $\mu g m g_{cat}^{-1} h^{-1}$	15.2	20

Table S1. Performance comparisons of ENRR electrocatalysts in aqueous solutions under ambient condition.

CoFe ₂ O ₄	0.1 M Na ₂ SO ₄	30.97 μg mg _{cat} ⁻¹ h ⁻¹	11.65	21
Cu _{2-x} S/MoS ₂	$0.1 \text{ M Na}_2 \text{SO}_4$	22.1 $\mu g m g_{cat}^{-1} h^{-1}$	6.06	22
Bi@C-900	0.1 M Na ₂ SO ₄	$\begin{array}{c} 4.22 \pm 0.33 \ \mu g \\ m g_{cat} ^{-1} \ h^{-1} \end{array}$	15.10 ± 0.43	23
Pd ₃ Bi	0.05 M H ₂ SO ₄	$\begin{array}{c} 59.05 \pm 2.27 \ \mu g \\ m g_{cat} ^{-1} \ h^{-1} \end{array}$	$\begin{array}{c} 21.52 \pm \\ 0.71 \end{array}$	24

References

- 1. Kresse, G. and Furthmüller, J. Comput. Mater. Sci. 1996, 6, 15-50.
- 2. Kresse, G. and Furthmüller, J. Phys. Rev. B 1996, 54, 11169–11186.
- 3. Perdew, J. P.; Burke, K. and Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865-3868.
- 4. Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758-1775.
- 5. Blöchl, P. E. Phys. Rev. B 1994, 50, 17953-17979.

6. H. Tan, Q. Ji, C. Wang, H. Duan, Y. Kong, Y. Wang, S. Feng, L. Lv, F. Hu, W. Zhang, W. Chu, Z. Sun and W. Yan, *Nano Res.*, 2021, DOI: 10.1007/s12274-021-3934-6.

7. Y. Kong, Y. Li, X. Sang, B. Yang, Z. Li, S. Zheng, Q. Zhang, S. Yao, X. Yang, L. Lei, S. Zhou, G. Wu and Y. Hou, *Adv. Mater.*, 2022, **34**, e2103548.

8. D. K. Yesudoss, H. Chun, B. Han and S. Shanmugam, Appl. Catal. B, 2022, 304.

9. Y. Qu, T. Dai, Y. Cui, Y. Zhang, Z. Wang and Q. Jiang, Chem. Eng. J., 2022, 433, 133752.

10. D. Chen, M. Luo, S. Ning, J. Lan, W. Peng, Y. R. Lu, T. S. Chan and Y. Tan, *Small*, 2022, 18, e2104043.

11. Z. Xi, K. Shi, X. Xu, P. Jing, B. Liu, R. Gao and J. Zhang, Adv. Sci., 2022, 9, 2104245.

12. C. Du, C. Qiu, Z. Fang, P. Li, Y. Gao, J. Wang and W. Chen, Nano Energy, 2022, 92.

13. Y. Wang, W. Cheng, P. Yuan, G. Yang, S. Mu, J. Liang, H. Xia, K. Guo, M. Liu, S. Zhao, G. Qu, B. A. Lu, Y. Hu, J. Hu and J. N. Zhang, *Adv. Sci.*, 2021, **8**, e2102915.

14. K. Chu, X. Li, Q. Li, Y. Guo and H. Zhang, Small, 2021, 17, e2102363.

15. G. Fan, W. Xu, J. Li, J. L. Chen, M. Yu, Y. Ni, S. Zhu, X. C. Su and F. Cheng, *Adv. Mater.*, 2021, **33**, e2101126.

16. Y. Guo, J. Gu, R. Zhang, S. Zhang, Z. Li, Y. Zhao, Z. Huang, J. Fan, Z. Chen and C. Zhi, *Advanced Energy Materials*, 2021, **11**.

17. X. Li, Y. Luo, Q. Li, Y. Guo and K. Chu, *Journal of Materials Chemistry A*, 2021, **9**, 15955-15962.

18. G. Lin, Q. Ju, X. Guo, W. Zhao, S. Adimi, J. Ye, Q. Bi, J. Wang, M. Yang and F. Huang, *Adv. Mater.*, 2021, **33**, e2007509.

19. Y. Guo, T. Wang, Q. Yang, X. Li, H. Li, Y. Wang, T. Jiao, Z. Huang, B. Dong, W. Zhang, J. Fan and C. Zhi, *ACS Nano*, 2020, **14**, 9089-9097.

20. X.-W. Lv, X.-L. Liu, Y.-J. Suo, Y.-P. Liu and Z.-Y. Yuan, ACS Nano, 2021, 15, 12109-12118.

21. C. Wang, L.-L. Gu, S.-Y. Qiu, J. Gao, Y.-C. Zhang, K.-X. Wang, J.-J. Zou, P.-J. Zuo and X.-D. Zhu, *Appl. Catal. B*, 2021, **297**.

22. T. Jiang, L. Li, L. Li, Y. Liu, D. Zhang, D. Zhang, H. Li, B. Mao and W. Shi, *Chem. Eng. J.*, 2021, **426**.

23. Y. Wan, H. Zhou, M. Zheng, Z. H. Huang, F. Kang, J. Li and R. Lv, *Adv. Funct. Mater.*, 2021, **31**.

24. X. Wang, M. Luo, J. Lan, M. Peng and Y. Tan, Adv. Mater., 2021, 33, e2007733.