Co,N-doped GQDs/SnO₂ mesoporous microspheres exhibit synergistically enhanced gas sensing properties for H₂S gas detection

Tingting Chen^{1,2}, Jianhai Sun^{1*}, Ning Xue¹, Xinxiao Zhang^{1,2}, Hai-

rong Wang³, Kaisheng Jiang^{1,2}, Tianye Zhou^{1,2}, Hao Quan^{1,2}

¹State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100194, China

²University of Chinese Academy of Sciences, Beijing, 100049, China

³School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China

* Corresponding Author: Jianhai Sun, Professor, State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences

Tel: 86-10-58887183, FAX: 86-10-58887183, email: sunjh@aircas.ac.cn

Figure S1 X-ray photoelectron spectroscopy (XPS) survey spectrum (a) and high resolution XPS spectrum of Co,N-GQDs: (b) C1s, (c) O1s; (d) N1s; (e) Co2p.

Figure S2 Sensing properties of 0.3 % Co,N-GQDs/SnO2 mesoporous microspheres under repeated exposure to 40 ppm H2S. The deviation of ten repeated test results is 0.299.