Electronic Supplementary Information

"Trojan Horse" Strategy Towards Robust Co-N₄ Active Sites Accommodated in Micropore Defect-Rich Carbon Nanosheets for Boosting Selective Hydrogenation of Nitroarenes

Qingshan Zhao^a, Wanxin Ni^a, Xiaojie Tan^a, Fengliang Caoa^{a, b}, Tengfei Liu^a, Hao Huang^a, Zhinian Cheng^a, Yiwen Li^a, Shuwei He^a, Hui Ning^a and Mingbo Wu^{a, b}*

^a State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China

^b Institute of New Energy, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China

*Corresponding author.

Tel.: (+86) 532 86983452.

E-mail address: wumb@upc.edu.cn

Fig. S1 TEM images of Co-N-CNS-Th-u (Co-N-CNS-Th-u was prepared through the same procedures with Co-N-CNS-Th except for HCl washing).

Fig. S2 Co 2p XPS spectrum of Co-N-CNS-Th-u.

Fig. S3 TEM images of CNS and Co-N-CNS.

Fig. S4 (a, b) SEM and (c, d) TEM images of Co-N-C.

Fig. S5 C 1s XPS spectra of (a) Co-N-CNS-Th and (b) Co-N-CNS.

Fig. S6 XRD patterns of the recovered molten salt, KCl, and CaCl₂.

Fig. S7 (a) SEM and (b, c) TEM images of Co-N-CNS-Th-r.

Fig. S8 (a) XPS survey spectrum, (b) C 1s XPS spectrum, (c) N 1s XPS spectrum, and (d) Co 2p XPS spectrum of Co-N-CNS-r.

Fig. S9 Time-dependent catalytic performance of Co-N-CNS-Th-k.

Fig. S10 (a, e) XPS survey spectra, (b, f) N 1s XPS spectra, (c, g) C 1s XPS spectra, and (d, h) Co 2p XPS spectra of fresh Co-N-CNS-Th and recycled Co-N-CNS-Th after 10 runs.

Fig. S11 (a, d) XPS survey spectra, (b, e) N 1s XPS spectra, and (c, f) Co 2p XPS

spectra of collected Co-N-CNS-Th and Co-N-CNS after the H₂-TPR tests.

Fig. S12 Adsorption energies of the intermediates in the selective hydrogenation of p-CNB process on regular Co-N₄ configuration embedded in graphene and Co-N₄ sites embedded in the micropore defective Co-N-CNS-Th.

Fig. S13 Optimized structures and adsorption energies of (a) the $-NO_2$ and (b) -Cl group in *p*-CNB. Optimized structures and adsorption energies of (c) the $-NO_2$ and (b) $-CH=CH_2$ group in *p*-nitrostyrene.

Fig. S14 Illustration for the reaction path of *p*-CNB hydrogenation over Co-N-CNS-Th.

Entry	Catalyst	I_D/I_G	Surface area (m ² g ⁻¹)
1	CNS	0.98	198
2	Co-N-CNS	1.12	608
3	Co-N-CNS-Th	1.18	698

Table S1. Physical properties of CNS, Co-N-CNS and Co-N-CNS-Th.

Table S2. Structural parameters extracted from the Co K-edge EXAFS fitting.

Sample	Path	CN	R(Å)	σ²(×10-3Ų)	ΔE ₀ (eV)	R factor
Co foil	Co-Co	12	2.49	7	7.4	0.0003
Co-N-CNS-Th	Co-N(O)	4.0	1.87	7	-9.0	0.014
Co-N-CNS	Co-N(O)	4.3	1.87	2.8	-7.1	0.014
	Co-Co	0.4	2.47	1.3		

Table S3. The molar and mass composition of Co-N-CNS-Th before and after the cycling test determined by XPS and ICP-OES.

	XPS			ICP-OES	
Element	C/at.%	N/at.%	O/at.%	Co/at.%	Co/wt.%
Before reaction	83.25	10.35	6.21	0.18	0.59
After 10 runs	82.20	11.11	6.48	0.21	0.61

Entry	Catalyst	Reaction conditions	TOF (h ⁻¹)	
1	Co-N-CNS-Th	2 MPa H ₂ , 100 °C	169.8	This work
2	Co-N-CNS	2 MPa H ₂ , 100 °C	112.4	This work
3	Co-N-CNS-Th	N ₂ H ₄ ·H ₂ O, 80 °C	345.0	This work
4	Co-N-CNS-Th	NaBH ₄ , 30 °C	10188.6	This work
5	Co@NC-1	H ₂ , 1 MPa, 30 °C	12.3	Ref. 1
6	Co-N-C	H ₂ , 3 MPa, 80 °C	35.9	Ref. 2
7	H-Co-N-C@SiO ₂ -20	H ₂ , 2.7 MPa, 110 °C	146.0	Ref. 3
8	Co@CN-400	H ₂ , 1 MPa, 60 °C	4.8	Ref. 4
9	Co/CoO @Carboon	H ₂ , 4 MPa, 120 °C	25.2	Ref. 5
10	Co@mesoNC	H ₂ , 3 MPa, 110 °C	42.0	Ref. 6
11	Co@NC-800	N ₂ H ₄ ·H ₂ O, 80 °C	39.8	Ref. 7
12	Fe-Ni NPs	NaBH4, 30 °C	17.1	Ref. 8

 Table S4. Catalytic performances of related cobalt-based catalysts for the selective

 hydrogenation of nitroarenes.

Sample	C/at. %	N/at. %	O/at. %	Co/at. %
Fresh Co-N-CNS-Th	69.14	19.50	10.97	0.39
Collected Co-N-CNS-Th	79.08	10.50	10.15	0.26

Table S5. Elemental contents of collected Co-N-CNS-Th and collected Co-N-CNS after the H_2 -TPR tests.

 Table S6. Absorption tests of *p*-CNB on CNS, Co-N-CNS, and Co-N-CNS-Th.

Sample	Absorption quantity (µmol g ⁻¹)
CNS	11
Co-N-CNS	302
Co-N-CNS-Th	353

Reference

- R. J. Gao, L. Pan, Z. W. Li, X. W. Zhang, L. Wang and J. J. Zou, *Chin. J. Catal.*, 2018, **39**, 664-672.
- W. G. Liu, L. L. Zhang, W. S. Yan, X. Y. Liu, X. F. Yang, S. Miao, W. T. Wang,
 A. Q. Wang and T. Zhang, *Chem Sci*, 2016, 7, 5758-5764.
- X. C. Lan, B. Ali, Y. Wang and T. F. Wang, *ACS Appl. Mater. Interfaces*, 2020, 12, 3624-3630.
- 4. Y. L. Cao, K. K. Liu, C. Wu, H. P. Zhang and Q. Y. Zhang, *Applied Catalysis A-General*, 2020, **592**.
- 5. B. Chen, F. Li, Z. Huang and G. Yuan, *Chemcatchem*, 2016, **8**, 1132-1138.
- X. Sun, A. I. Olivos-Suarez, D. Osadchii, M. J. V. Romero, F. Kapteijn and J. Gascon, *Journal of Catalysis*, 2018, 357, 20-28.
- S. Chen, L.-L. Ling, S.-F. Jiang and H. Jiang, *Green Chemistry*, 2020, 22, 5730-5741.
- 8. D. R. Petkar, B. S. Kadu and R. C. Chikate, *RSC Advances*, 2014, 4, 8004-8010.