Supporting Information

Bimetallic Ir_xPb nanowire networks with

enhanced electrocatalytic activity for oxygen

evolution reaction

Hangyu Tian^a, Wenlei Zhu^a, Qiurong Shi^a, Shichao Ding^a, Zhaoyuan Lyu^a, Mingjie Xu^b, Xiaoqing Pan^b, Mark H.Engelhard^c, Du Dan^a, Yuehe Lin^{*a}

^aSchool of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA ^bIrvine Materials Research Institute (IMRI), University of California, Irvine, CA, 92697 USA ^cEnvironmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA

The electrochemical surface area (ECSA) calculation

The ECSA, specific activity (SA) and mass activity (MA) is calculated as follows:

$ECSA = C_{DL}/(C_s * m_{Ir})$	(1)
i=v*C _{DL}	(2)
$SA = i_{@350mV} / ECSA$	(3)

- $SA = i_{@350mV} / ECSA$
- $MA = i_{@350mV} / m_{Ir}$ (4)

The specific capacitance (Cs) is 0.035 mF cm^{-2} in $0.1M \text{ HClO}_4$ aqueous solution and the mass loading (m_{Ir}) of Ir_xPb metallic nanowire networks (MNNs) and commercial IrO₂ is calculated by molecular mass. ECSA is calculated through the equation (1). According to equation (2), the double layer capacitance (C_{DL}) is obtained from the charge current i as function of the scan rate v, equal to the slope based on the equation (2). The SA and MA is calculated based on equation (3) and (4), involving the current density at an overpotential of 350 mV ($i_{@350mV}$), ECSA and m_{Ir} . The SA is obtained by the division of $i_{@350mV}$ by ECSA and the MA is obtained by the division of $i_{@350mV}$ by m_{Ir} .

Figure S1. (A-C) HAADF-STEM image of Ir_xPb for twin boundary.

Figure S2. TEM image of Ir₃Pb (a) and corresponding FFT (b).

Figure S3. TEM image (a) and HRTEM image (b) of Ir₄Pb.

Figure S4. TEM image (a) and HRTEM image (b) of Ir₅Pb.

Figure S5. XPS spectra of Ir_3Pb aerogels, corresponding to the 4f peak of Ir (a) and the 4f peak of Pb (b), respectively.

Figure S6. Colloid solution of Ir hydrogel without Pb.

e S7. Obtained hydrogel solution without Pb addition (a) and (b) with Pb addition.

Figure S8. (A) Nitrogen physisorption isotherm. (B) Pore size distribution of prepared Ir₃Pb.

Figure S9. TEM image of Ir₃Pb MNNs at 90 $^{\circ}$ C (A), 120 $^{\circ}$ C (B) and 150 $^{\circ}$ C (C).

Figure S10. The illustration of OER adsorption mechanism in acid media.

Figure S11. (A-D)The cyclic voltammetry scan of Ir₃Pb, Ir₄Pb, Ir₅Pb and IrO₂ at different scan rates(25 mV/s, 50 mV/s, 75 mV/s, 100 mV/s and 200 mV/s).

Figure S12. The cathodic charging currents measured at 0.25 V vs. SCE plotted as a

function of scan rate.

Figure S13. The X-ray diffraction pattern of Ir₃Pb after ADT test.

Ir-based electrocatalysts	Loading of catalysts (ug/cm ²)	Overpotenti al at 10 mA cm ⁻² (mV)	Reference
SrCo _{0.9} Ir _{0.1} O _{3-δ}	255	320	1
IrCoNi nanocrystals	51	303	2
Ir Cu nanocrystal	198	311	3
IrNiO _x core-shell particles	10.2	280	4
IrNiCu double-layered nanoframe	20	303	5
AlNiCoIrMo HEA	24.3	275	6
Pt-Ir-Pd nanocages	16.8	408	7
Bimetallic Ir-Pb Nanowire Networks	25.9	307	This work

Table S1. Comparison OER activity of Ir-based electrocatalysts in 0.1M HClO₄ acidic solutions at
the current density of 10 mA/cm^2 .

Table S2. The ICP-OES results of IrxPb MNs.

	Ir (ppm)	Pb (ppm)	Atomic ratio
Ir ₅ Pb	0.1012	0.0226	5
Ir ₄ Pb	1.34	0.35	4
Ir ₃ Pb	0.1787	0.0551	3

Table S3. The ICP-OES results of Ir_xPb MNs after ADT.

	Pb (ppb)	Leaching weight rates(%)
before	0.07	-
after	0.17	0.1

Reference

1 Y. Chen, H. Li, J. Wang, Y. Du, S. Xi, Y. Sun, M. Sherburne, J. W. Ager, A. C. Fisher and Z. J. Xu, *Nat. Commun.*, 2019, **10**, 572.

2 J. Feng, F. Lv, W. Zhang, P. Li, K. Wang, C. Yang, B. Wang, Y. Yang, J. Zhou, F. Lin, G. Wang and S. Guo, *Advanced Materials*, 2017, **29**, 1703798.

3 Y. Pi, J. Guo, Q. Shao and X. Huang, Chem. Mater., 2018, 30, 8571-8578.

4 H. N. Nong, H.-S. Oh, T. Reier, E. Willinger, M.-G. Willinger, V. Petkov, D. Teschner and P. Strasser, *Angewandte Chemie. Int. Ed.*, 2015, **54**, 2975–2979.

5 J. Park, Y. Sa, H. Baik, T. Kwon, S. Joo and K. Lee, ACS Nano, 2017, 11, 5500-5509.

6 Z. Jin, J. Lv, H. Jia, W. Liu, H. Li, Z. Chen, X. Lin, G. Xie, X. Liu, S. Sun and H. Qiu, *Small*, 2019, **15**, 1904180.

7 J. Zhu, M. Xie, Z. Chen, Z. Lyu, M. Chi, W. Jin and Y. Xia, *Adv. Energy. Mater.*, 2020, **10**, 1904114.