Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Oxygen-incorporated induced C@MoS₂-CoS₂-O@C nanocomposites with improved electronic structure as high-performance anode for sodium-based dual-ion batteries

Jingui Zong, Fei Wang*, Chang Nie, Mingshu Zhao and Sen Yang

School of Physics, MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Key Laboratory of Shaanxi for Advanced Functional Materials and Mesoscopic Physics, Xi'an Jiaotong University, Xi'an 710049, ShaanXi, People's Republic of China.

Corresponding author E-mail address: <u>feiwang@mail.xjtu.edu.cn</u> (F. Wang).

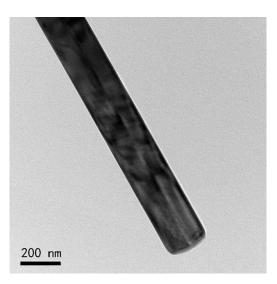


Fig. S1 TEM of MoO₃ nanorod.

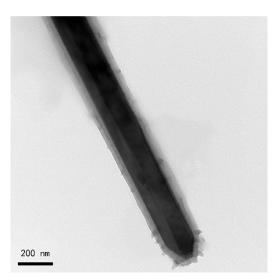
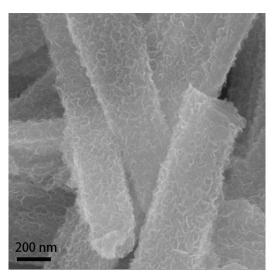



Fig. S2 TEM of MoO₃@PPY nanorod.

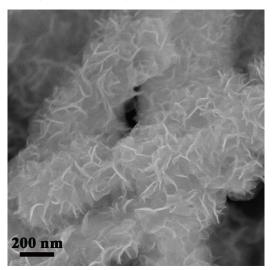


Fig. S4 SEM image of C@MoS₂.

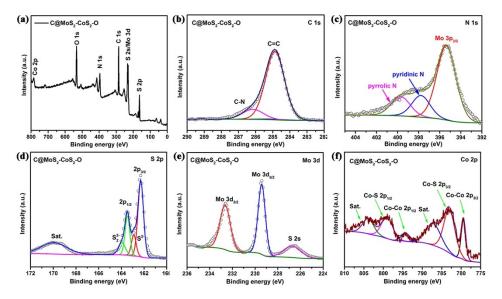


Fig. S5 XPS spectra of C@MoS2-CoS2-O. (a) survey spectrum. (b) C 1s spectrum. (c) N 1s

spectrum. (d) S 2p spectrum. (e) Mo 3d spectrum. (f) Co 2p spectrum.

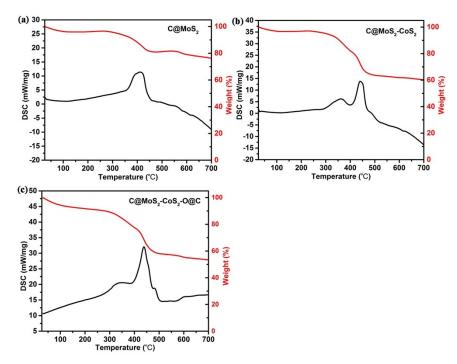


Fig. S6 DSC/TGA curves of (a) C@MoS₂, (b) C@MoS₂-CoS₂ and C@MoS₂-CoS₂-O@C nanocomposites.

The DSC/TGA measurements were conducted in air atmosphere to test the carbon contents of C@MoS₂, C@MoS₂-CoS₂ and C@MoS₂-CoS₂-O@C, as shown in Fig. S6. The clear weight-loss takes place from 300 to 700 °C, which is attributed to the process of MoS₂ oxidized to MoO₃, CoS₂ oxidized to Co₃O₄ and C oxidized to CO₂. The mass loss of C@MoS₂, C@MoS₂-CoS₂ and C@MoS₂-CoS₂-O@C is 23.7%, 39.7% and 46.6%.

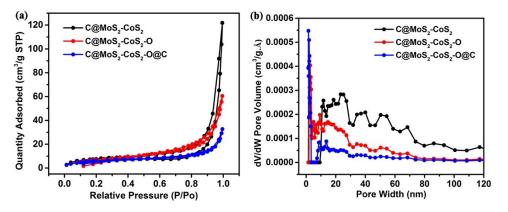


Fig. S7 (a) Nitrogen adsorption/desorption isotherms and (b) the pore distribution of C@MoS₂-CoS₂, C@MoS₂-CoS₂-O and C@MoS₂-CoS₂-O@C.

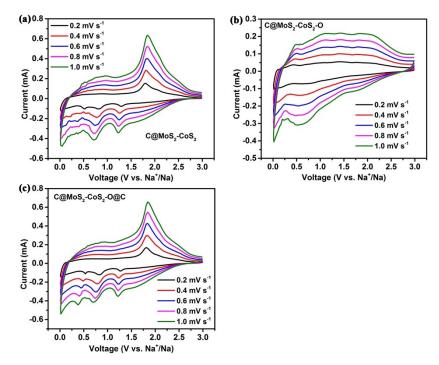


Fig. S8 (a) CV curves of the C@MoS₂-CoS₂ as SIBs anode at different scanning rates. (b) CV curves of the C@MoS₂-CoS₂-O as SIBs anode at different scanning rates. (c) CV curves of the C@MoS₂-CoS₂-O@C as SIBs anode at different scanning rates.

The ratio of capacitive (k1v) and diffusion control contributions can be quantitatively divided by the formula:¹

$$i(V) = k1v + k2v^{1/2}$$

where k1 and k2 are a constant at certain potentials and would be calculated by linear plotting $i/v^{1/2}$ versus $v^{1/2}$. V is the specified voltage. i is the current at a given voltage. And v is the scanning rate.

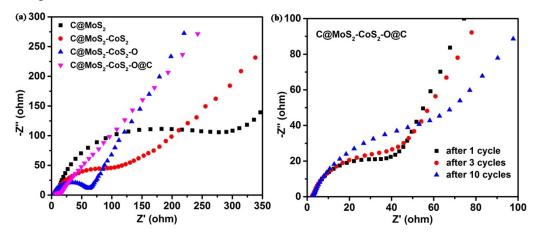


Fig. S9 (a) Electrochemical impedance spectra of C@MoS₂, C@MoS₂-CoS₂, C@MoS₂-CoS₂-O and C@MoS₂-CoS₂-O@C for sodium storage. (b) Electrochemical impedance spectra of C@MoS₂-CoS₂-O@C after 1 cycle, 3cycles and 10 cycles.

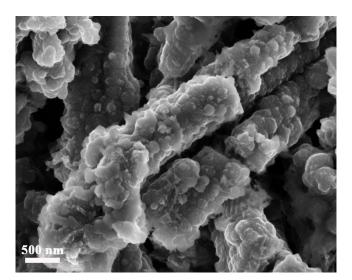


Fig. S10 SEM image of C@MoS₂-CoS₂-O@C after 150 cycles at 1A g⁻¹ for S-DIBs.

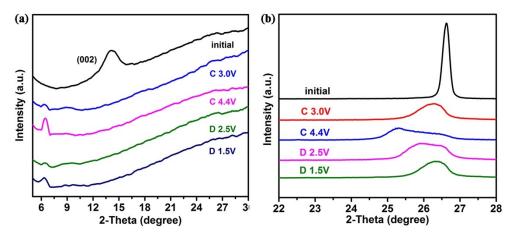


Fig. S11 Ex situ XRD patterns of (a) C@MoS₂-CoS₂-O@C anode and (b) the graphite cathode at different charge/discharge voltages.

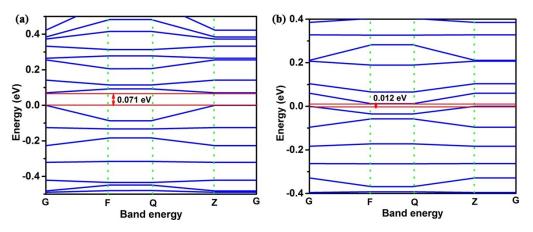


Fig. S12 (a) Calculated band structure of MoS_2 - CoS_2 . (b) Calculated band structure of MoS_2 - CoS_2 -O.

sample	Со	Мо			
	mg/g	mg/g			
$C@MoS_2-CoS_2$	165	681			

Table. S1 ICP-MS analysis of C@MoS₂-CoS₂.

Table. S2 Energy spectrum analysis of C, N, O, S, Mo and Co atomic percentages for C@MoS₂-CoS₂, C@MoS₂-CoS₂-O and C@MoS₂-CoS₂-O@C.

samples	С	N	0	S	Co	Мо
	At%	At%	At%	At%	At%	At%
C@MoS ₂ -CoS ₂	35.82	4.52	31.43	18.21	1.50	8.53
C@MoS2-CoS2-O	39.64	4.93	35.61	11.52	1.65	6.65
C@MoS2-CoS2-O@C	55.92	9.88	18.18	9.66	1.84	4.54

Reference:

1 K. Zhang, M. Park, L. Zhou, G.-H. Lee, J. Shin, Z. Hu, S.-L. Chou, J. Chen and Y.-M. Kang, *Angew. Chem*, 2016, **128**, 13014.