Supporting information

Phosphonated Phenol-formaldehyde Based High-temperature Proton

Exchange Membrane with Intrinsic Protonic Conductors and Proton

Transport Channels

Xiaofeng Hao, ^a Zhen Li, ^a Min Xiao, ^a Dongmei Han, ^a Sheng Huang, ^a Guan Xi, ^a Shuanjin Wang, * ^a and Yuezhong Meng * ^a

The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong

Province, State Key Laboratory of Optoelectronic Materials and Technologies, School

of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275,

China

Fig. S1 GPC chart of phenol-formaldehyde oligomer.

Fig. S2. AFM images of 40PPF-Na/PBI membrane

Fig. S3. ¹H-NMR spectrum of phenol-formaldehyde oligomer in DMSO-d6.

Fig. S4. ¹H-NMR spectrum of phosphonated phenol-formaldehyde oligomer in DMSO-

d6.

Fig. S5 ³¹P-NMR spectrum of phosphonated phenol-formaldehyde oligomer in DMSO-*d*6

Fig. S6 Thermogravimetric curve of phosphonated phenol-formal dehyde oligomer in N_2

atmosphere.

Fig. S7 Proton conductivity of PTFE/40PPF.

Fig. S8 Single cell performance of PBI membrane at 140 $^\circ\!\mathrm{C}$ and 160 $^\circ\!\mathrm{C}$ without humidification.