## SUPPORTING INFORMATION FOR:

# Radical Doped Hole Transporting Material for High-Efficiency and Thermal

### Stable Perovskite Solar Cells

Yuxi Zhang,<sup>1,2</sup> Bo Huang,<sup>2</sup> Min Hu,<sup>3</sup> Boer Tan,<sup>4</sup> Fuzhi Huang,<sup>2,5</sup> Yi-Bing Cheng,<sup>2,5</sup> Alexandr N. Simonov,<sup>6</sup> Jianfeng Lu<sup>1,2</sup>\*

<sup>1</sup> State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 430070 Wuhan, China

<sup>2</sup> Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan 528216, China

<sup>3</sup> School of Electronic and Electrical Engineering, Hubei Province Engineering Research Center for Intelligent Micro-nano Medical Equipment and Key Technologies, Wuhan Textile University, Wuhan 430200, P. R. China.

<sup>4</sup> Department of Chemical and Biological Engineering, ARC Centre of Excellence for Exciton Science, Monash University, Victoria 3800, Australia

<sup>5</sup> State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China

<sup>6</sup> School of Chemistry, Monash University, Victoria 3800, Australia

|            |                                                                                                            | Page |
|------------|------------------------------------------------------------------------------------------------------------|------|
|            | Experimental procedures                                                                                    | S3   |
| Figure S1  | Structures of 1,1,2,2-tetrachloroethane, benzoyl peroxide, and <i>spiro</i> -OMeTAD.                       | S5   |
| Figure S2  | Time-dependent evolution of the UV-Vis spectra of <i>spiro</i> -OMeTAD in different solutions in 1-sun     | S6   |
| Figure S3  | Time-dependent evolution of the UV-Vis spectra of <i>spiro</i> -OMeTAD in different solutions in 0.014-sun | S7   |
| Figure S4  | Conductivity of the HTLs                                                                                   | S8   |
| Figure S5  | UPS spectra                                                                                                | S9   |
| Figure S6  | XPS spectra                                                                                                | S10  |
| Figure S7  | The NMR study of pure <i>spiro</i> -OMeTAD and BPO                                                         | S11  |
| Figure S8  | The NMR study of different HTL                                                                             | S12  |
| Figure S9  | AFM images of perovskite and HTLs on perovskite                                                            | S13  |
| Figure S10 | Steady-state PL and time-resolved PL emission emission spectra                                             | S14  |
| Figure S11 | Time-resolved confocal PL lifetime maps of perovskite and different HTLs                                   | S14  |
| Table S1   | TRPL fitting parameters                                                                                    | S15  |
| Figure S12 | SEM images of perovskite and different HTLs on the perovskite layer                                        | S16  |
| Figure S13 | XRD patterns of perovskite and different HTLs on the perovskite layer                                      | S17  |
| Figure S14 | Photovoltaic parameters of PSCs with different molar ratio of BPO                                          | S18  |
| Figure S15 | Photovoltaic parameters of PSCs with different concentration of spiro-OMeTAD                               | S19  |
| Figure S16 | Microscope image of the fresh and thermal aged HTLs                                                        | S20  |
| Figure S17 | XRD patterns for the fresh and thermal aged HTLs                                                           | S21  |
| Figure S18 | Photovoltaic parameters of PSCs with different HTL stored under humidity conditions                        | S22  |
| Figure S19 | Time-dependent evolution of the UV–Vis spectra of solutions with TeCA-BPO-PF $_6$                          | S23  |
| Figure S20 | IPCE spectra and integrated current density for PSCs with TeCA-BPO-PF $_6$ -S as HTL                       | S23  |
| Table S2   | Photovoltaic parameters of solar cells with different HTL                                                  | S24  |

#### **EXPERIMENTAL**

#### Materials

Cesium iodide (CsI), isobutylamine bromide (i-BABr), poly(3-hexylthiophene-2,5-diyl)(P3HT), poly(triaryl amine) (PTAA) were purchased from Xi'an Polymer Light Co., Ltd. Methylammonium (MA<sup>+</sup>) bromide, poly(4-butyl-N,N-diphenylaniline) (poly-TPD) was purchased from Luminescence Technology Corp. Lead iodide (PbI<sub>2</sub>) was purchased from TCI. Formamidinium (FA<sup>+</sup>) iodide was purchased from Greatcell Solar Materials Pty Ltd. 1,1,2,2-Tetrachloroethane (TeCA) was purchased from Adamas Pharmaceuticals, Inc. 2,2',7,7'-tetrakis (N,N-di-p-methoxyphenylamino)-9,9-spirobifluorene (*spiro*-OMeTAD) was purchased from Shenzhen Feiming Science and Technology Co., Ltd. Other materials were purchased from Alfa-Aesar and Sigma Aldrich and used without any further purification.

#### **Device fabrication**

*FTO substrates preparation:* The FTO glass was firstly etched using a femtosecond laser machine. Then it was cleaned through ultrasonic cleaning by detergent, pure water, and ethyl alcohol for 20 min, respectively. After drying by dry-air blowing, it was treated by Ultraviolet ozone (UVO) for 15 min before use.

*Electron transport layer (ETL) fabrication:* SnO<sub>2</sub> was deposited onto clean FTO glass substrate by a chemical bath deposition (CBD) method according to reports.<sup>15</sup> g urea was dissolved into 400 mL deionized water, followed by the addition of 100  $\mu$ L mercaptoacetic acid and 5 mL HCl (37 wt%), and then 1.096 g SnCl<sub>2</sub>•2H<sub>2</sub>O was dissolved in the solution (~ 0.012 M). The solution was stored in a fridge before use. The as-cleaned FTO glass was soaked into the diluted SnCl<sub>2</sub>•2H<sub>2</sub>O solution (~ 0.002 M) for 2.5 hours at 90 °C. Then it was washed by deionized water, dried by blowing air, and followed by the annealing at 180°C for 1 hour. Before device fabrication, all the SnO<sub>2</sub>/FTO substrates were treated by UVO for 15 min.

Further, perovskite and HTL deposition procedures were undertaken inside a N<sub>2</sub>/Ar-filled glovebox.

*Perovskite layer*: The Cs<sub>0.05</sub>FA<sub>0.79</sub>MA<sub>0.16</sub>PbBr<sub>0.51</sub>I<sub>2.49</sub> mixed perovskite precursor was prepared by dissolving 1.4 M mixture of lead salts composed of 0.85 PbI<sub>2</sub> and 0.15 PbBr<sub>2</sub>, and 1.3 M organic cation that are composed of 0.85 FAI and 0.15 MABr in the a mixed solvent of N,N-dimethylformamide solution (DMF)/ Dimethyl sulfoxide (DMSO) (4:1, vol.), and adding 34  $\mu$ L CsI (pre-dissolved as a 2 M stock solution in DMSO) to achieve the desired perovskite solution. The perovskite absorber was deposited onto the UVO-processed SnO<sub>2</sub> substrates (UV illuminated for 10 min) by spin-coating a 25  $\mu$ L mixed perovskite solution at 6000 rpm for 30 s with 1000 rpm s<sup>-1</sup> ramp, 120  $\mu$ L anti-solvent of ethyl acetate was dropped at the last 5th second. The films were then annealed at 120 °C for 45 min.

Further, all the achieved perovskite films were treated with a 15 mM i-BABr/IPA solution at 4000 rpm for 20 s with 4000 rpm s<sup>-1</sup> ramp, and annealed at 100 °C for 5 min.

*Hole transport layer (HTL) fabrication:* Convention HTL precursor solution was prepared by dissolving 73 mg *spiro*-OMeTAD in 1 mL chlorobenzene. The molar ratios of additives for *spiro*-OMeTAD were 0.55, 3.47 and

0.09 for LiTFSI, *t*BP and FK209, respectively.

Solutions of *spiro*-OMeTAD in TeCA were prepared by dissolving 24.3-73mg of *spiro*-OMeTAD in 1mL TeCA (20-60mM). Whenever required, varied amounts (0-120 mol.% with respect to *spiro*-OMeTAD) of BPO or  $nBu_4NPF_6$  (tetrabutylammonium hexafluorophosphate) were added from their 1.6 and 1.0 M stock solutions, respectively. The latter were prepared by dissolving 0.077g BPO or 0.077g  $nBu_4NPF6$  in 200 µL TeCA.

For deposition, the required *spiro*-OMeTAD solution was spin-coated onto the perovskite films at 3000 rpm for 30s (3000 rpm s<sup>-1</sup> ramp).

As a final step of the device fabrication, 80-nm thick gold layer was deposited by using thermal evaporation. *Module fabrication*:

P1, P2 and P3 scribing etch using a femtosecond laser machine of series-connected modules. The FTO glass was firstly etched form P1 lines. After the deposition of the *spiro*-OMeTAD film, the sample was re-etched to form P2 lines. Finally, it formed effective series-connected modules by etching the Au to form P3 lines.

#### Characterization

The perovskite and HTL films were investigated using field-emission scanning electron microscope (SEM) (S-4800, Hitachi, Japan), atomic force microscope (AFM) (NX10, Park, Korea), Ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS) (ESCALAB 250Xi). UV-Vis spectrometer (lambda 750 S, PerkinElmer), X-ray diffractometer (XRD, D8 Advance). PL, TRPL, time-resolved confocal PL microscopy (Micro Time 200, PicoQuant GmbH), respectively.

The current density-voltage (*J-V*) curves of these PSCs were measured using a Keithley 2400 source meter in the room environment. The light source was a solar simulator (Oriel 94023 A, 300 W) matching AM 1.5G. The intensity of the light was 100 mW cm<sup>-2</sup> calibrated by a standard silicon reference solar cell (Oriel, VLSI standards). The *J-V* scans were recorded at 10 mV steps in forward ( $-0.1 \text{ V} \rightarrow 1.2 \text{ V}$ ) and reverse ( $1.2 \text{ V} \rightarrow -0.1 \text{ V}$ ) directions. All the devices were tested using a black metal aperture with a defined active area of 0.16 cm<sup>2</sup> for the small devices.

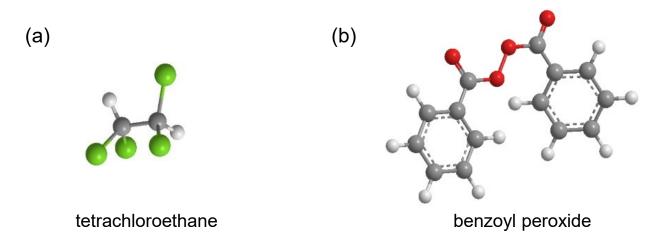
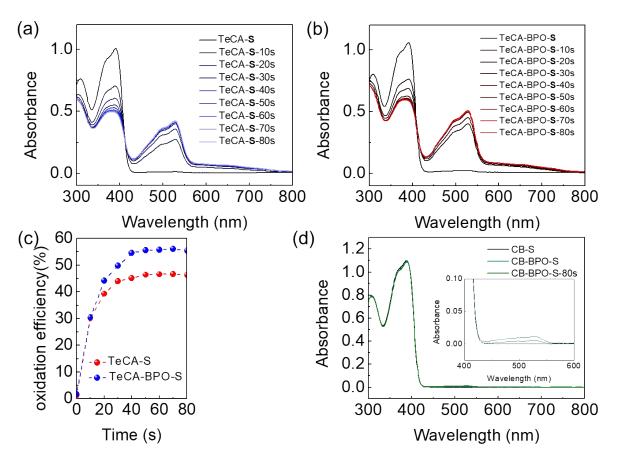
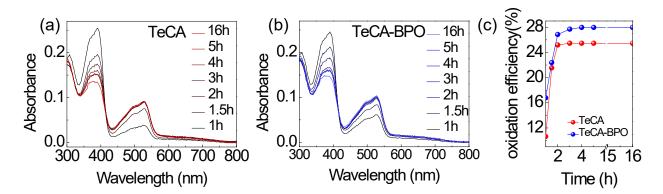
The conductivity normalized to the device geometry was calculated according to the equation

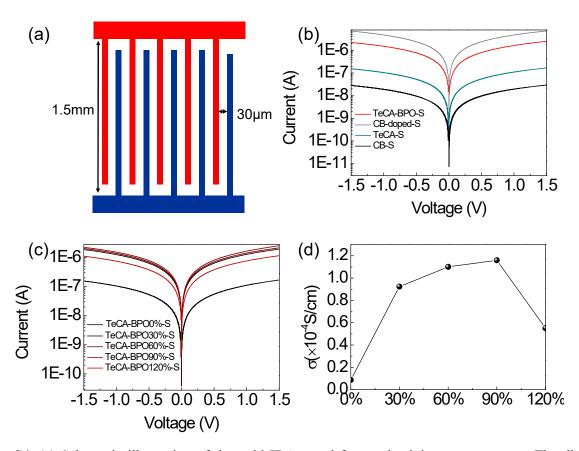
$$\sigma = \frac{l}{\nu(2n-1)lh}$$

where *I* is the measured current, *V* is the applied voltage, *d* is the spacing between adjacent electrodes, *n* is the number of finger pairs, *l* is the length of the overlap area of the fingers, and *h* is the thickness of the HTM film. The thickness of the different doped sample was determined by cross-sectional SEM images. CB-**S** and CB-doped-**S** film thickness is 200nm, TeCA-**S**, TeCA-BPO-**S** and TeCA-BPO-PF<sub>6</sub>-**S** film thickness was 70nm.

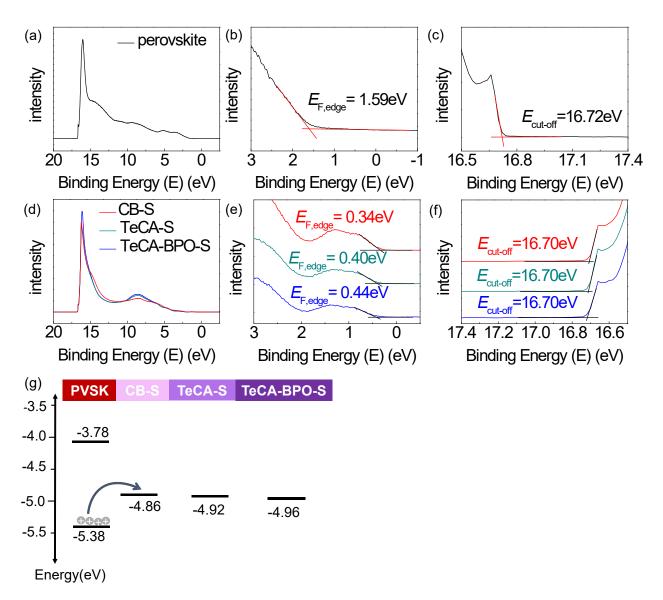
Thermal stability test: all devices are placed in a glass petri dish which located in an 85°C oven (environmental conditions:  $20 \pm 5$  °C,  $15 \pm 5\%$  relative humidity). All the devices are cooled down before each test.

### SUPPLEMENTARY DATA.

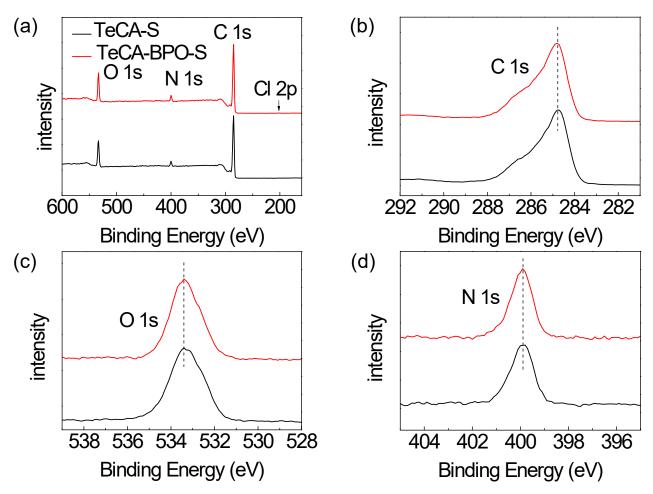






Figure S1. Chemical structures of (a) 1,1,2,2-tetrachloroethane (TeCA), (b) benzoyl peroxide (BPO).




**Figure S2.** Evolution of the UV–Vis absorption spectra of 2.6×10<sup>-5</sup> M *spiro*-OMeTAD solutions in (a) TeCA and (b) TeCA with 90 mol.% (with respect to *spiro*-OMeTAD) BPO under 1-sun illumination, and (c) corresponding changes in the amount of [*spiro*-OMeTAD]<sup>++</sup> (mol.% with respect to the initial *spiro*-OMeTAD<sup>0</sup> amount). (d) UV-Vis absorption spectra of *spiro*-OMeTAD dissolved in CB and containing 90 mol.% of BPO (with respect to *spiro*-OMeTAD); for the latter solution, data are shown before and 80 s of irradiation under 1-sun. The inset shows the enlarged spectra of the oxidized *spiro*-OMeTAD peak at around 528 nm.




**Figure S3.** Evolution of the UV–Vis absorption spectra *spiro*-OMeTAD solutions in (a) TeCA and (b) TeCA with 90 mol.% (with respect to *spiro*-OMeTAD) BPO under 0.014-sun illumination. (c) corresponding changes in the amount of [spiro-OMeTAD]<sup>++</sup> (mol.% with respect to the initial spiro-OMeTAD<sup>0</sup> amount).



**Figure S4.** (a) Schematic illustration of the gold IDAs used for conductivity measurements. The distance between adjacent fingers is  $d = 30 \,\mu\text{m}$ , the length of the fingers is  $l = 1.5 \,\text{mm}$ , the number of finger pairs is 75. (b) I-V characteristics of spin-coated different HTM films (c) I-V characteristics of spin-coated *spiro*-OMeTAD films doped with different molar concentrations of BPO relative to *spiro*-OMeTAD. (d) Conductivity derived from (c) as a function of BPO content.



**Figure S5.** UPS spectra of the  $Cs_{0.05}FA_{0.79}MA_{0.16}PbBr_{0.51}I_{2.49}$  perovskite (*dark*), unadulterated *spiro*-OMeTAD (*red*), TeCA (*dark cyan*) and TeCA-BPO (*blue*) showing (a, d) full range, (b, e) the cut-off energy (*E* <sub>cut-off</sub>), and (c, f) Fermi edge (*E* <sub>F,edge</sub>). (g) Energy band schematic for  $Cs_{0.05}FA_{0.79}MA_{0.16}PbBr_{0.51}I_{2.49}$  and different HTLs.



**Figure S6.** XPS analysis of the *spiro*-OMeTAD flims doped using TeCA (*black*) and TeCA-BPO combination (*red*) (a) survey, (b) C 1s, (c) O 1s and (d) N 1s spectra. All data were corrected to the C 1s peak at 284.8eV. The N: Cl ratio from XPS is 17:1.

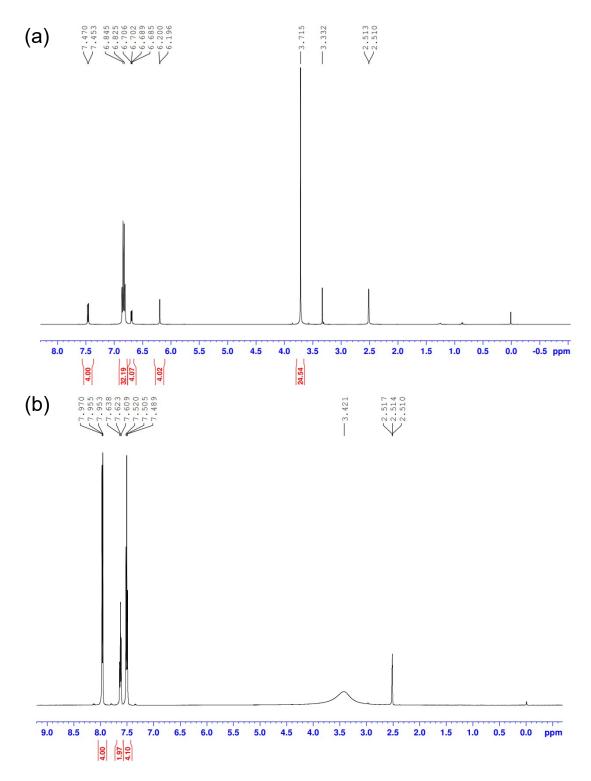
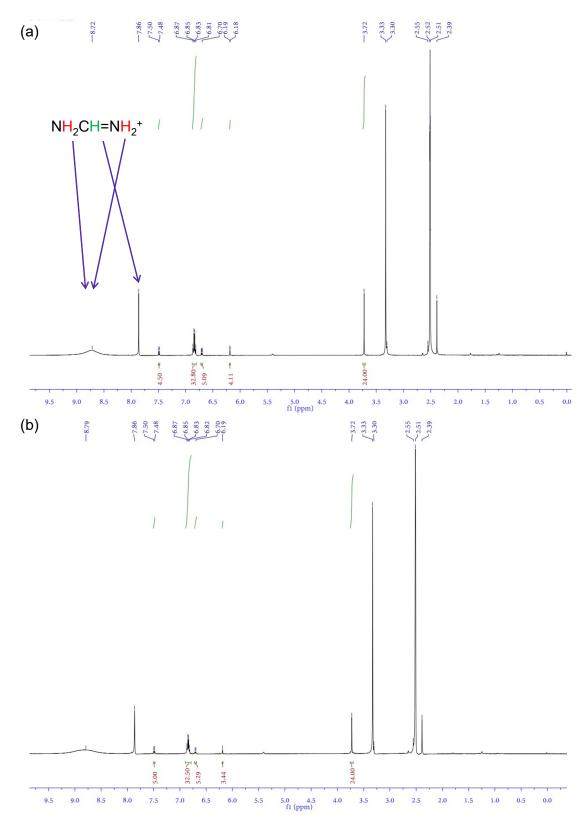




Figure S7. <sup>1</sup>H NMR spectra of (a) pure *spiro*-OMeTAD and (b) pure BPO dissolved in d<sub>6</sub>-DMSO.



**Figure S8.** <sup>1</sup>H NMR spectra of the  $d_6$ -DMSO solutions derived from the digestion of the *spiro*-OMeTAD and perovskite films from the FTO|SnO<sub>2</sub>|Cs<sub>0.05</sub>FA<sub>0.79</sub>MA<sub>0.16</sub>PbBr<sub>0.51</sub>I<sub>2.49</sub>|HTL samples, HTLs deposited from the precursor solution based on (a) TeCA and (b) TeCA + BPO (90 mol.% BPO) and irradiated under 1-sun for 50s.

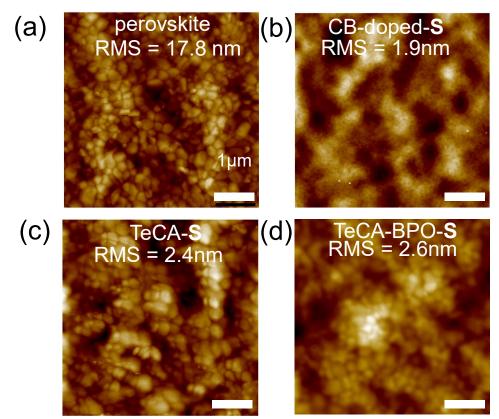
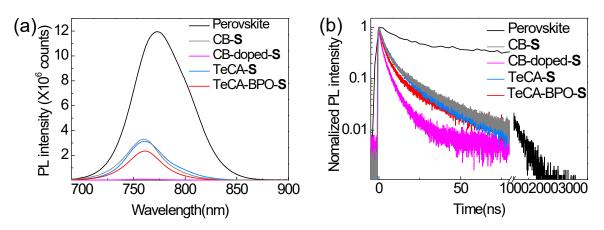
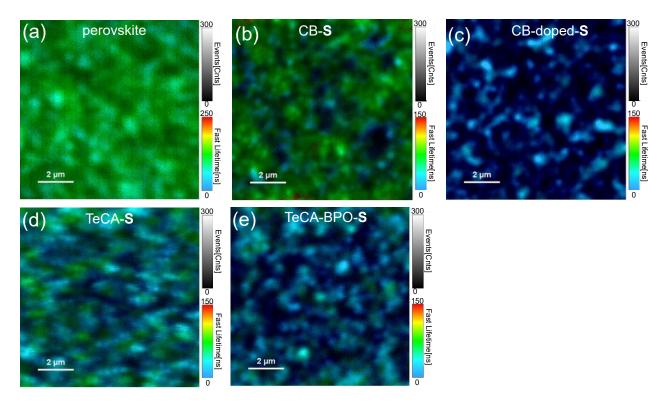
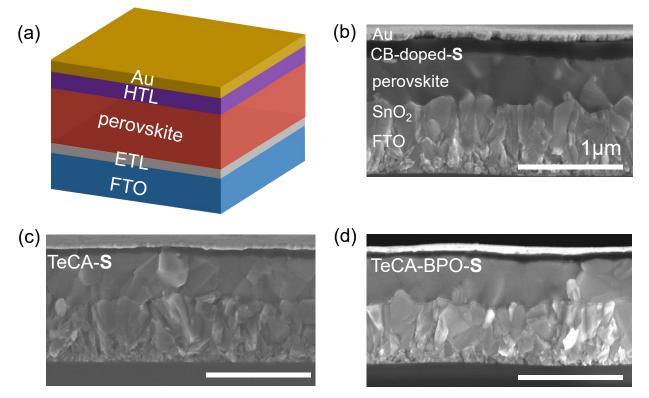
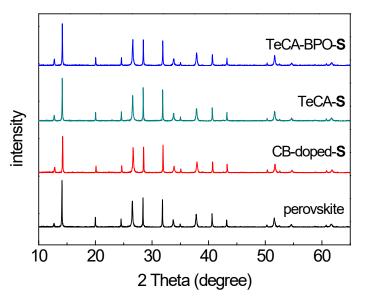





Figure S9. AFM images of the  $FTO|SnO_2|Cs_{0.05}FA_{0.79}MA_{0.16}PbBr_{0.51}I_{2.49}|HTL samples (a) without and (b-c) with different$ *spiro*-OMeTAD HTLs: (b) CB-S (60 mM); (c) TeCA-S (30 mM); (d) TeCA-BPO-S (90 mol.% BPO) (30 mM).

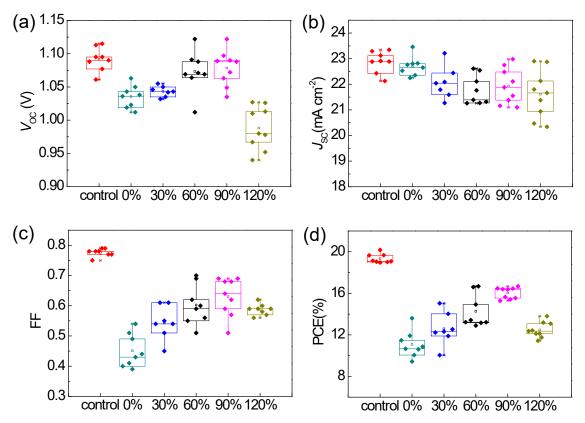



**Figure S10.** (a) Steady-state photoluminescence spectra and (d) time-resolved photoluminescence spectra the  $Cs_{0.05}FA_{0.79}MA_{0.16}PbBr_{0.51}I_{2.49}$  perovskite on glass (*black*), and similar samples coated with different HTLs.

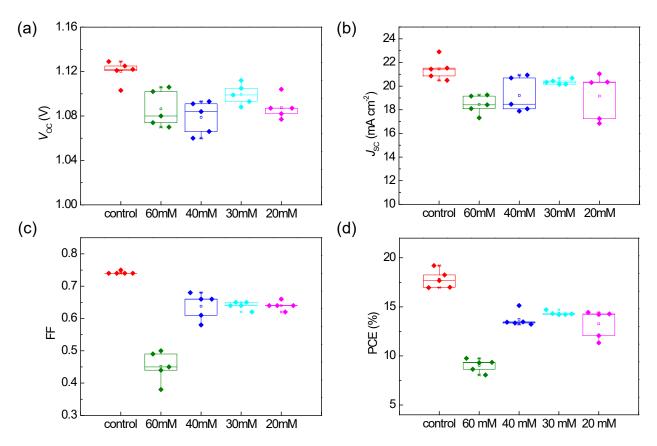



**Figure S11.**Time-resolved confocal PL lifetime maps of (a) the  $Cs_{0.05}FA_{0.79}MA_{0.16}PbBr_{0.51}I_{2.49}$  perovskite film on glass, and perovskite covered with different HTLs (b) CB-**S**, (c) CB-doped-**S**, (d) TeCA-**S** and (e) TeCA-BPO-**S** (90 mol.% BPO).

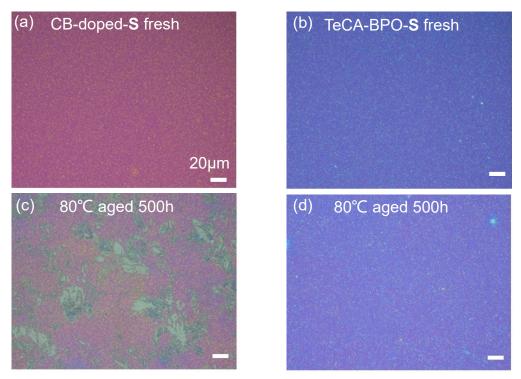
**Table S1.** Parameters used to fit equation  $Y = A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_1) + A_0$  to TPRL curves (**Figure 3b** in the main text) measured for the encapsulated  $Cs_{0.05}FA_{0.79}MA_{0.16}PbBr_{0.51}I_{2.49}$  perovskite (on glass) without and with HTL deposited. The average PL lifetime  $\langle \tau_{avg} \rangle = \sum \alpha_i \tau_i$ , where  $\alpha_i = A_i \tau_i / \sum A_i \tau_i$ 


|            | $A_1$ | $\tau_1(ns)$ | $A_2$ | $\tau_2(ns)$ | $	au_{ m avg}( m ns)$ |
|------------|-------|--------------|-------|--------------|-----------------------|
| perovskite | 0.70  | 14.22        | 0.22  | 275.22       | 238.00                |
| CB-S       | 0.76  | 3.42         | 0.25  | 18.66        | 13.25                 |
| CB-doped-S | 0.68  | 1.62         | 0.33  | 6.40         | 5.99                  |
| TeCA-S     | 0.85  | 3.03         | 0.15  | 20.27        | 12.36                 |
| TeCA-BPO-S | 0.97  | 2.96         | 0.09  | 21.30        | 10.30                 |

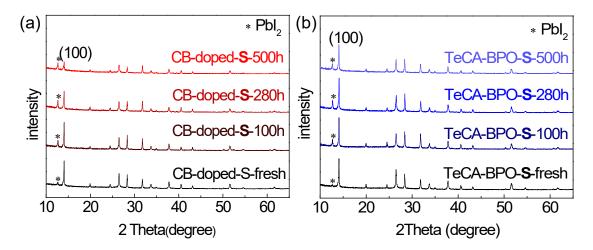



**Figure S12.** (a) Schematic diagram of solar cells with a standard n-i-p architecture. Cross-sectional SEM images for the solar cells with (b) CB-doped-S, (c) TeCA-S and (d) TeCA-BPO-S (90 mol.% BPO) HTLs.




**Figure S13.** Full range XRD patterns for fresh  $Cs_{0.05}FA_{0.79}MA_{0.16}PbBr_{0.51}I_{2.49}$  perovskite film (*black*) and fresh perovskite covered with different HTLs: CB-doped-S (*red*), TeCA-S (*dark cyan*) and TeCA-BPO-S (*blue*).




**Figure S14.** Statistics of photovoltaic parameters (a)  $V_{OC}$ , (b)  $J_{SC}$ , (c) FF and (d) PCE for the FTO|SnO<sub>2</sub>|Cs<sub>0.05</sub>FA<sub>0.79</sub>MA<sub>0.16</sub>PbBr<sub>0.51</sub>I<sub>2.49</sub>|i-BABr|HTL|Au solar cells using HTLs based CB-doped-S (control) and *spiro*-OMeTAD doped using TeCA+BPO combination with different amount of BPO added (mol.% with respect to *spiro*-OMeTAD). Concentration of *spiro*-OMeTAD in the precursor solution was 60mM. Solar cells performance parameters were determined from *J-V* curves, measured under 100 mWcm<sup>-2</sup> simulated AM 1.5G solar irradiance with an aperture of 0.16 cm<sup>2</sup>.



**Figure S15.** Statistics of the photovoltaic parameters (a)  $V_{OC}$ , (b)  $J_{SC}$ , (c) FF and (d) PCE for the FTO|SnO<sub>2</sub>|Cs<sub>0.05</sub>FA<sub>0.79</sub>MA<sub>0.16</sub>PbBr<sub>0.51</sub>I<sub>2.49</sub>|*i*-BABr |HTL|Au solar cells using HTLs based CB-doped-**S** (control) and *spiro*-OMeTAD doped using TeCA+BPO combination with different concentration of *spiro*-OMeTAD in the precursor solution. The amount of BPO is 90 mol.% with respect to *spiro*-OMeTAD. The photovoltaic parameters were extracted from *J-V* curves (FB to SC) measured under 100 mW/cm<sup>2</sup> simulated AM 1.5G solar irradiance with an aperture of 0.16 cm<sup>2</sup>.



**Figure S16.** The visible light images of the fresh (a) CB-doped-S, (b) TeCA-BPO-S and aged (C) CB-doped-S, (d) TeCA-BPO-S HTL films. The films were not encapsulated and aged in an oven at 80 °C and at a relative humidity of  $15 \pm 5$  % in air for 500 hours.



**Figure S17.** Evolution of XRD patterns of the non-encapsulated  $FTO|SnO_2|Cs_{0.05}FA_{0.79}MA_{0.16}PbBr_{0.51}I_{2.49}|i-BABr film covered with different HTLs at 80 °C and relative humidity of <math>15 \pm 5\%$  in air: (a) CB-doped-S (*red*) (b) TeCA-BPO-S (*blue*).

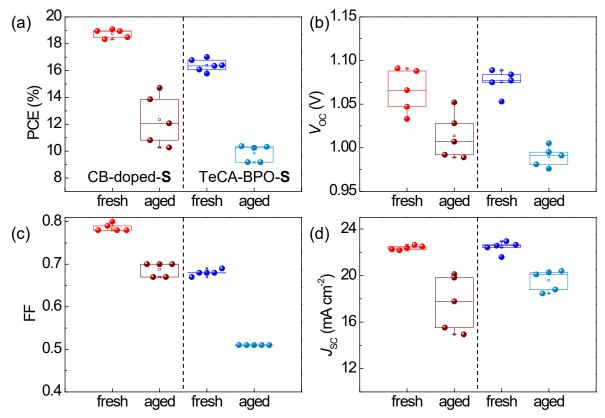
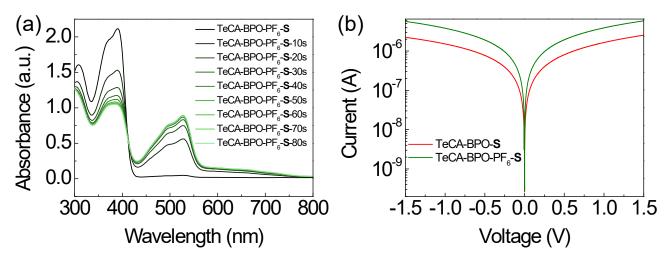




Figure S18. Performance of recorded under AM 1.5G 1-sun irradiation for non-encapsulated  $FTO|SnO_2|Cs_{0.05}FA_{0.79}MA_{0.16}PbBr_{0.51}I_{2.49}|$  i-BABr | HTL | Au PSCs based on CB-doped-S and TeCA-BPO-S (90 mol.% BPO) HTLs during storage at relative humidity of  $40 \pm 5\%$  in air for 5 days



**Figure S19.** (a) Evolution of the UV–Vis absorption spectra of *spiro*-OMeTAD solutions with TeCA-BPO-PF<sub>6</sub>; (b) I-V characteristics of spin-coated TeCA-BPO-S (*red*) and TeCA-BPO-PF<sub>6</sub>-S (*gree*).

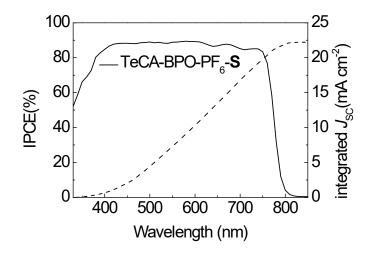



Figure S20. IPCE spectra and integrated current densities for the PSCs using TeCA-BPO-PF<sub>6</sub>-S as HTM.

| HTL           |                  |          | V <sub>oc</sub><br>(V) | $J_{\rm SC}$ (mA cm <sup>-2</sup> ) | FF            | PCE<br>(%) | <i>q-</i> SPO<br>(%) | J <sub>IPCE</sub> <sup>b</sup><br>(mA<br>cm <sup>-2</sup> ) |
|---------------|------------------|----------|------------------------|-------------------------------------|---------------|------------|----------------------|-------------------------------------------------------------|
| CB-doped-S    | average FB to SC |          | $1.11\pm0.04$          | $22.7\pm0.5$                        | $0.80\pm0.02$ | 19.4±0.7   |                      |                                                             |
|               | 1 4              | FB to SC | 1.13                   | 23.2                                | 0.80          | 21.0       | 18.82                | 22.1                                                        |
|               | best             | SC to FB | 1.07                   | 23.1                                | 0.76          | 18.7       |                      |                                                             |
| TeCA-S        | average FB to SC |          | $1.01\pm0.07$          | $22.3\pm0.8$                        | $0.55\pm0.03$ | 12.3±1.7   |                      |                                                             |
|               | 1 /              | FB to SC | 1.08                   | 22.5                                | 0.58          | 13.9       | 11.92                | 21.8                                                        |
|               | best             | SC to FB | 1.06                   | 22.5                                | 0.52          | 12.4       |                      |                                                             |
| TeCA-BPO-S    | average FB to SC |          | $1.11 \pm 0.02$        | 22.4 ± 1.1                          | $0.72\pm0.04$ | 17.9±0.8   |                      |                                                             |
|               | 1                | FB to SC | 1.11                   | 22.6                                | 0.73          | 18.3       | 16.14                | 22.2                                                        |
|               | best             | SC to FB | 1.07                   | 22.7                                | 0.60          | 14.4       |                      |                                                             |
| TeCA-BPO-     | average FB to SC |          | $1.15\pm0.02$          | $22.9\pm0.5$                        | $0.77\pm0.01$ | 20.5±0.6   |                      |                                                             |
| PF6- <b>S</b> | best             | FB to SC | 1.16                   | 23.1                                | 0.79          | 21.1       | 19.76                | 22.2                                                        |
|               |                  | SC to FB | 1.12                   | 23.0                                | 0.71          | 19.7       |                      |                                                             |

<sup>a</sup>  $V_{OC}$  (open-circuit voltage),  $J_{SC}$  (short-circuit current density), FF (fill factor) and PCE (power conversion efficiency) data were derived from the *J-V* curves recorded for 10 devices of each type in the forward-bias (FB) to short-circuit (SC) direction, and for the best-performing devices recorded in each direction. Quasi steady-state power output (*q*-SPO) values were derived from the final point of 120 s measurements at fixed voltages corresponding to the maximum power points in the *J-V* data for the best-performing cell. All measurements were under AM 1.5G 1-sun simulated irradiation.

Reference:

T. I. Bu, J. Li, H. y. Li, C. Tian, J. Su, G. Tong, L. K. Ono, C. Wang, Z. p. Lin, N. y. Chai and *Science*, 2021, 372, 1327-1332.