Electronic Supporting Information (ESI)

Surface Ligands Influence the Selectivity of Cation Uptake in Polyoxovanadate-alkoxide Clusters

Rachel E. Garwick^{‡a}, Eric Schreiber^{‡a}, William W. Brennessel^a, James R. McKone*^b, Ellen M. Matson*^a

^aDepartment of Chemistry, University of Rochester, Rochester NY 14527, USA ^bDepartment of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15260, USA *Corresponding Authors emails ellen.matson@rochester.edu (E. M. Matson); jmckone@pitt.edu (J.R. McKone) *Authors contributed equally to this work.

Supporting Information Table of contents.

Experimental Methods
Figure S1. ¹ H NMR of 2-propyl in MeCN-d ₃ at 21°CS4
Figure S2 . CV of a 0.5 mM solution of 2-propyl at 100 mVs ⁻¹ in MeCN with 0.1 M [ⁿ Bu ₄ N]OTf electrolyte
Figure S3. ¹ H NMR of [ⁿ Bu ₄ N] ₂ [V ₆ O ₇ (OC ₃ H ₇) ₁₂] in MeCN-d ₃ at 21°CS5
Figure S4. CV of a 1 mM solution of $[{}^{n}Bu_{4}N]_{2}[V_{6}O_{7}(OC_{3}H_{7})_{12}]$ at 100 mVs ⁻¹ in MeCN with 0.1 M [${}^{n}Bu_{4}N$]OTf electrolyteS5
Figure S5. ¹ H NMR of [ⁿ Bu ₄ N] ₂ [V ₆ O ₇ (OC ₅ H ₁₁) ₁₂] in MeCN-d ₃ at 21°CS6
Figure S6. CV of a 1 mM solution of $[{}^{n}Bu_{4}N]_{2}[V_{6}O_{7}(OC_{5}H_{11})_{12}]$ at 100 mVs ⁻¹ in MeCN with 0.1 M $[{}^{n}Bu_{4}N]OTf$ electrolyteS6
Figure S7. CV and SWV data for a) NaOTf and b) KOTf titration experiments for 2-propyl in MeCN with 0.1 M [ⁿ Bu ₄ N]OTf electrolyte
Figure S8. CV and SWV data for a) NaOTf and b) KOTf titration experiments for 3-pentyl in MeCN with 0.1 M [ⁿ Bu ₄ N]OTf electrolyte
Figure S9. CV and SWV data for LiOTf titration experiments for 1-methyl and 2-propyl in propylene carbonate with 0.1 M [ⁿ Bu ₄ N]OTf electrolyte
Table S1. Crystallographic parameters for $[^{n}Bu_{4}N]_{2}[V_{6}O_{7}(OC_{3}H_{7})_{12}]$ and $[Li(pc)]_{2}[V_{6}O_{7}(OC_{3}H_{7})_{12}]$
References

Experimental Methods

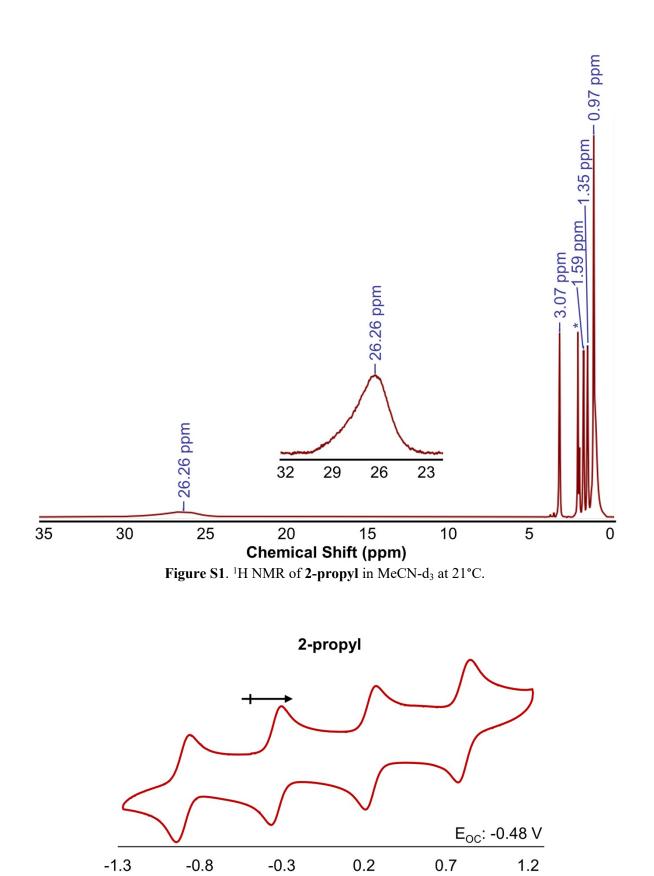
General Considerations. All manipulations, unless otherwise noted, were carried out in the absence of water and oxygen in a UniLab MBraun inert atmosphere glovebox under a nitrogen atmosphere. Glassware was oven-dried for a minimum of 4 h and cooled in an evacuated antechamber prior to use. 3 Å molecular sieves (Fisher Scientific) were dried in a Schlenk flask for 48 h at 125 °C under vacuum prior to use. Acetonitrile (MeCN) was dried and deoxygenated on a Glass Contour System (Pure Process Technology, LLC) and stored over 3 Å molecular sieves. Tetrabutylammonium triflate ([ⁿBu₄N]OTf) was purchased from Millipore Sigma, recrystallized three times by addition of pentane to a solution of the salt in ethyl acetate, and stored under dynamic vacuum for at least 24 h prior to use. Tetrabutylammonium borohydride, lithium triflate (LiOTf), sodium triflate (NaOTf), potassium triflate (KOTf), and lithium bis-(trifluoromethanesulfonyl)imide were purchased from Millipore Sigma and used as is. Complexes [V₆O₇(OCH₃)₁₂],¹ [V₆O₇(OC₃H₇)₁₂],² and [V₆O₇(OC₅H₁₁)₁₂]³ were synthesized according to reported procedures.

¹H NMR spectra were collected at 400 MHz on a Bruker DPX-400 instrument at 9.4 Telsa while locked on to deuterated solvent. CD₃CN was purchased from Cambridge Isotope Labs, degassed by three freeze-pump-thaw cycles, and stored over 3 Å molecular sieves prior to use. Single crystals of [ⁿBu₄N]₂[V₆O₇(OC₃H₇)₁₂] and [Li(pc)]₂[V₆O₇(OC₃H₇)₁₂] were mounted on the tip of a thin glass optical fiber (goniometer head) and mounted on a XtaLab Synergy-S Dualflex diffractometer equipped with a HyPix-6000HE HPC area detector for data collection at 100.00(10) K, respectively. The structures were solved using SHELXT-2018/2⁴ and refined using SHELXL-2018/3.⁵ Elemental analysis was performed on a PerkinElmer 2400 Series II analyzer, at the Elemental Analysis Facility located at the University of Rochester.

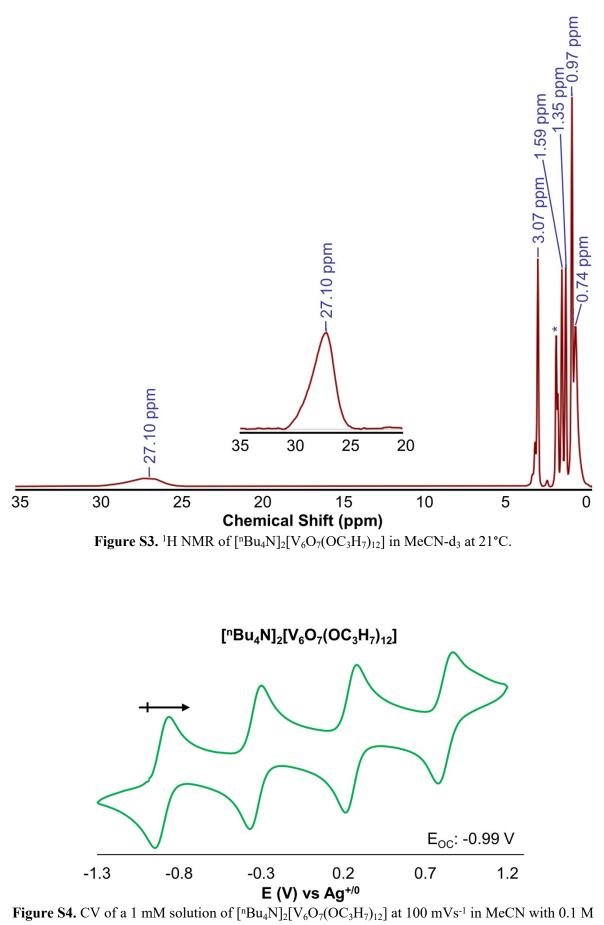
Synthesis of POV-Alkoxide Clusters

Synthesis of $[{}^{n}Bu_{4}N][V_{6}O_{7}(OC_{3}H_{7})_{12}]$ (2-propyl). A 25 mL Parr reactor was charged with VO(OC₃H₇)₃ (300 mg, 1.23 mmol), $[{}^{n}Bu_{4}N]BH_{4}$ (262 mg, 1.02 mmol), and 10 mL of *n*-propanol. The reactor was sealed and heated at 125 °C for 24 h, after which the reactor was cooled to room temperature. The maroon reaction solution was removed from the reactor and added to a round bottom flask with a stir bar and 1 mL of deionized water and was allowed to stir until the solution turned green (~1 h). The solution was dried *in vacuo*, the product was extracted with ethyl acetate, filtered, and evaporated to dryness. The green solid was brought into a drybox, where it was extracted in diethyl ether, filtered, and evaporated to dryness to produce $[{}^{n}Bu_{4}N][V_{6}O_{7}(OC_{3}H_{7})_{12}]$ (2-propyl) in moderate yield (110 mg, 39 %) ¹H NMR (400 MHz, CD₃CN): $\delta = 26.26, 3.07, 1.59, 1.35, 0.97$ ppm.

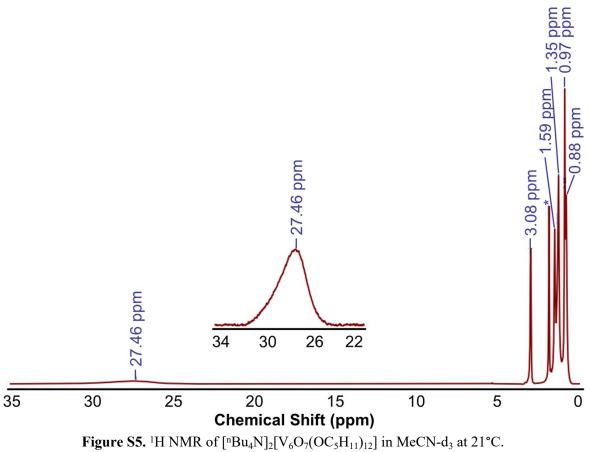
Synthesis of $[{}^{n}Bu_{4}N]_{2}[V_{6}O_{7}(OR)_{12}](R = C_{3}H_{7}, C_{5}H_{11})$. A 48 mL pressure vessel was charged with 200 mg of neutral-charged POV-alkoxide $[V_{6}O_{7}(OR)_{12}]$ (R=C₃H₇, C₅H₁₁), 3 molar equivalents of $[{}^{n}Bu_{4}N]BH_{4}$, a stir bar, and 20 mL MeCN. The vessel was sealed, removed from the drybox, and heated to 85 °C for 24 h with vigorous stirring. The brown-green solution was returned to the drybox, concentrated to 7 mL, and placed in a freezer at -30 °C, producing a teal green precipitate, identified as the dianionic, bis- $[{}^{n}Bu_{4}N]^{+}$ salt in moderate yield (*vide infra*). The low temperature conditions produced crystals suitable for single crystal X-ray diffraction analysis for $[{}^{n}Bu_{4}N]_{2}[V_{6}O_{7}(OC_{3}H_{7})_{12}]$.

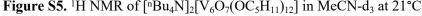

 $[{}^{n}Bu_{4}N]_{2}[V_{6}O_{7}(OC_{3}H_{7})_{12}]: \text{ yield} = 97 \text{ mg}, 0.060 \text{ mmol}, 34 \%; {}^{1}\text{H NMR (400 MHz, CD_{3}CN): } \delta = 27.10, 3.07, 1.59, 1.35, 0.97, 0.74 \text{ ppm.} \\ [{}^{n}Bu_{4}N]_{2}[V_{6}O_{7}(OC_{5}H_{11})_{12}]: \text{ yield} = 82 \text{ mg}, 0.042 \text{ mmol}, 31 \%; {}^{1}\text{H NMR (400 MHz, CD_{3}CN):} \\ \delta = 26.26, 3.07, 1.59, 1.35, 0.97, 0.88 \text{ ppm.}$

Synthesis of $[Li(pc)]_2[V_6O_7(OC_3H_7)_{12}]$. A 20 mL scintillation vial was charged with [ⁿBu₄N]₂[V₆O₇(OC₃H₇)₁₂] (100 mg, 0.062 mmol) and dissolved in 2 mL propylene carbonate. Li bis-(trifluoromethanesulfonyl)imide (180 mg, 0.63 mmol, 10 equiv.) was dissolved in 6 mL diethyl ether in a separate vial. The Li salt solution was added to the cluster solution, after which 6 mL of toluene and 4 mL of pentane were added. The cloudy solution was placed in a -30 °C freezer for 2 days, after which time crystals suitable for single crystal X-ray diffraction analysis were observed, and the compound was isolated in moderate yield (45.3 mg, 0.034 mmol, 54%). Crystals were crushed and dried for 48 h for elemental analysis. Elemental analysis for C₄₄H₉₆O₂₅Li₂V₆ (MW: 964.17 g/mol) Calc'd (%): C, 39.3; H, 7.2; Found (%): C, 39.522; H, 7.023; N, 0.053.


Electrochemistry. Electrochemical measurements were carried out using a Bio-Logic SP 150 potentiostat/galvanostat and the EC-Lab software suite. A 3 mm Glassy carbon disc electrode was used as the working electrode; a Pt wire was used as the counter electrode, and the reference electrode was a non-aqueous Ag/AgNO₃ cell filled with 1 mM silver nitrate (AgNO₃) in 0.1 M [ⁿBu₄N]PF₆ (BAS Inc). Cyclic voltammograms (CV) were measured at 100 mV s⁻¹ with IR compensation accounted for by measuring the uncompensated resistance with a 100 kHz impedance measurement and correcting for 85% of the expected drop using the ZIR tool in the EC-Lab suite. Square wave voltammograms (SWV) were measured with a pulse height of 25 mV, a pulse width of 100 ms, and a step height of 10 mV.

Procedure for Metal Triflate Titration Experiments. An analyte solution consisting of 0.1 M [${}^{n}Bu_{4}N$]OTf and 1 mM of selected cluster in 5 mL of MeCN or propylene carbonate was charged in an electrochemical cell. The second solution contained 10 mM MOTf (M = Li, Na, K) in 10 mL of MeCN or propylene carbonate. CV and SWV were recorded of the analyte solution prior to titration. Alkali salt solution was added to the cell to achieve specified MOTf : POV-alkoxide ratios and was allowed to stir for 10 s before a CV and SWV were taken. The process was repeated until 5 molar equivalents of MOTf was reached. After this point, where applicable, solid samples of MOTf salts were measured and added as a solid to access solutions with excess alkali salt (10-100 molar equivalents of MOTf versus POV-alkoxide).


Procedure for Cation Selectivity Studies. An electrochemical cell was charged with a solution containing 0.1 M MOTf (M = Na, K) and 1 mM of **1-methyl** or **3-pentyl** in MeCN and a stir bar. An initial CV and SWV were recorded of the cluster solution. A separate solution containing 10 mM LiOTf in 10 mL of MeCN and was added to the cluster solution in specified increments, stirring for 10 s before recording CV and SWV. The process was repeated until 5 molar equivalents of LiOTf (versus POV-alkoxide) was added.



E (V) vs Ag^{+/0} Figure S2. CV of a 0.5 mM solution of **2-propyl** at 100 mVs⁻¹ in MeCN with 0.1 M [ⁿBu₄N]OTf electrolyte.

[ⁿBu₄N]OTf electrolyte.

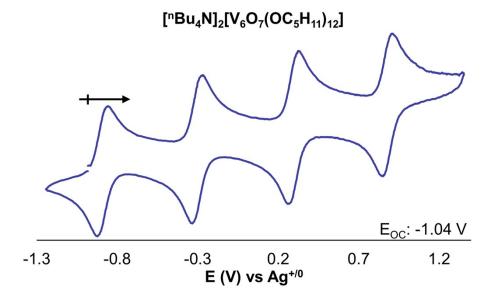


Figure S6. CV of a 1 mM solution of $[^{n}Bu_{4}N]_{2}[V_{6}O_{7}(OC_{5}H_{11})_{12}]$ at 100 mVs⁻¹ in MeCN with 0.1 M [ⁿBu₄N]OTf electrolyte.

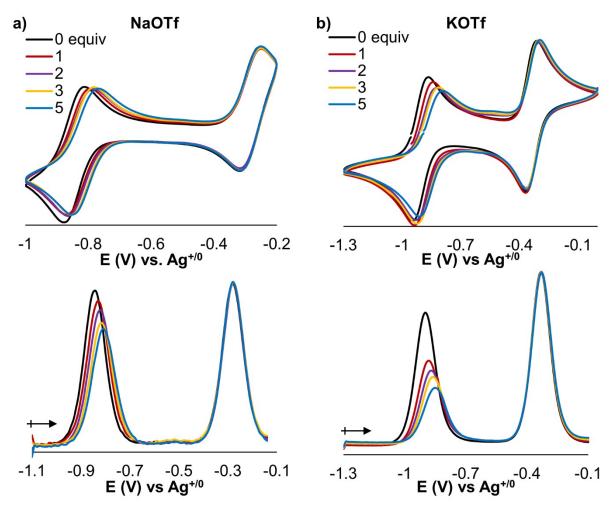


Figure S7. CV and SWV data for a) NaOTf and b) KOTf titration experiments for 2-propyl in MeCN with 0.1 M ["Bu₄N]OTf electrolyte.

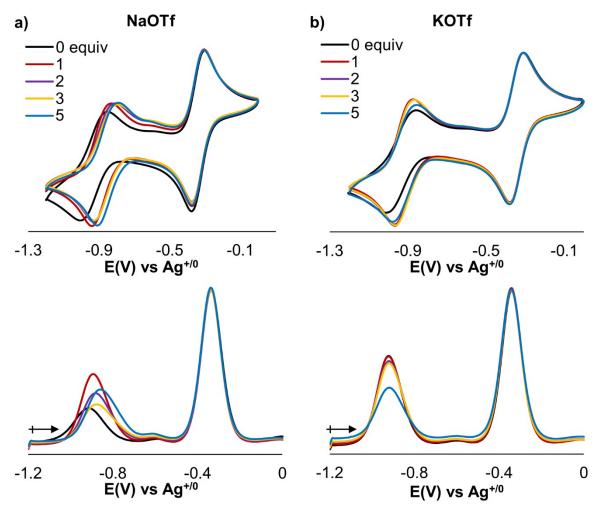


Figure S8. CV and SWV data for a) NaOTf and b) KOTf titration experiments for 3-pentyl in MeCN with 0.1 M ["Bu₄N]OTf electrolyte.

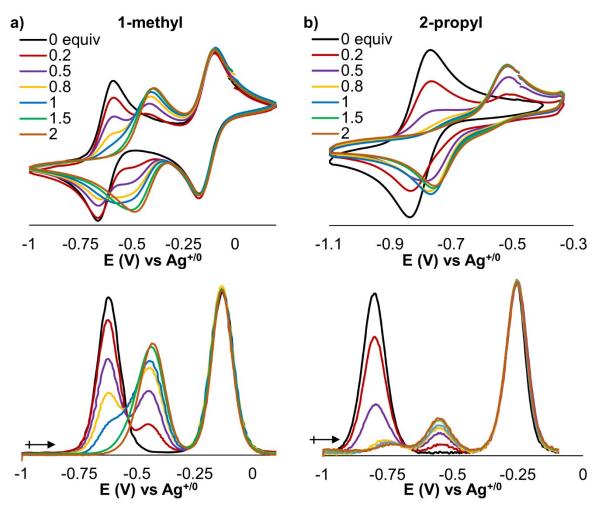


Figure S9. CV and SWV data for LiOTf titration experiments for a) 1-methyl and b) 2-propyl in propylene carbonate with 0.1 M [ⁿBu₄N]OTf electrolyte.

Compound	[Li(pc)] ₂ [V ₆ O ₇ (OC ₃ H ₇) ₁₂]	[ⁿ Bu ₄ N] ₂ [V ₆ O ₇ (OC ₃ H ₇) ₁₂](CH ₃ CN) ₄
CCDC	2145391	2145392
Empirical Formula	$C_{44}H_{96}Li_2O_{25}V_6$	$C_{76}H_{168}N_6O_{19}V_6$
Formula weight	1344.72	1775.79
Temperature/ K	100.00(10) K	100.00(10) K
Wavelength/ Å	1.54184 Å	1.54184 Å
Crystal system	monoclinic	monoclinic
Space group	C2/c	P21/n
Unit Cell Dimensions	a = 17.82370(10) Å b = 17.66670(10) Å c = 20.11890(10) Å α = 90° β = 91.2190(10)° γ = 90°	a = 13.85530(10) Å b = 18.3708(2) Å c = 18.6840(2) Å α = 90° β = 93.6200(10)° γ = 90°
Volume/ Å ³	6333.73(6) Å ³	4746.20(8) Å ³
Z	4	2
Reflections collected	54852	60860
Independent reflections	6854 [R(int) = 0.0297]	10232 [R(int) = 0.0513]
Completeness to theta =74.504°	99.9 %	99.9 %
Goodness-of-fit of F2	1.146	1.086
Final R indices [I>2sigma(I)]	R1 = 0.0277, wR2 = 0.0768	R1 = 0.0367, wR2 = 0.0988
Largest diff. peak and hole	0.419 and -0.440 Å ⁻³	0.468 and -0.596 Å ⁻³

Table S1. Crystallographic parameters for $[\text{Li}(\text{pc})]_2[V_6O_7(OC_3H_7)_{12}]$ and $[^nBu_4N]_2[V_6O_7(OC_3H_7)_{12}]$.

References

- 1. J. Spandl, C. Daniel, I. Brudgam and H. Hartl, Angew Chem Int Ed Engl, 2003, 42, 1163-1166.
- 2. A. M. Kosswattaarachchi, L. E. VanGelder, O. Nachtigall, J. P. Hazelnis, W. W. Brennessel, E. M. Matson and T. R. Cook, *J Electrochem Soc*, 2019, **166**, A464-A472.
- 3. L. E. VanGelder, E. Schreiber and E. M. Matson, *J Mater Chem A*, 2019, 7, 4893-4902.
- 4. G. M. Sheldrick, *Acta Crystallogr A Found Adv*, 2015, **71**, 3-8.
- 5. G. Sheldrick, *Acta Crystallographica Section C*, 2015, **71**, 3-8.