Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supporting information

Emerging Conjugated Radical Polymer Cathode with Ultra-Long Cycle Life for an Entire Polymer Rechargeable Battery

Ying Ou, Yufeng Xiong, Zhengfei Hu, Yang Zhang, Lijie Dong*

Center for smart materials and devices, state key laboratory of advanced technology for materials synthesis and processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, P.R. China

*Corresponding authors: Tel: (86) 27-87161730 Fax: (86) 27-87161730

E-mail: <u>dong@whut.edu.cn</u>

Figure S1 Synthetic route of the DDP-PROXYL

Figure S2 (a) FTIR, (b) ¹³C NMR and (c) ¹H NMR spectra (400 MHz, DMSO- d_6) of *N*,*N*'-Bis(4-nitrophenyl)-*N*,*N*'-diphenyl-1,4-phenylenediamine (DDP-NO₂)

Figure S3 (a) FTIR, (b) ¹³C NMR and (c) ¹H NMR spectra (400 MHz, DMSO- d_6) of *N*,*N*'-Bis(4-aminophenyl)-*N*,*N*'-diphenyl-1,4-phenylenediamine (DDP-NH₂)

Figure S4 (a) FTIR, (b) MS (ESI) spectra of 3-carboxy-2,2,5,5-tetramethyl-3-pyrrolin-1-oxyl (PROXYL-COOH)

Figure S5 MS (ESI) spectra of DDP-PROXYL monomer:

Figure S6 Galvanotatic charge/discharge curves of P(TPA-co-DDP-PROXYL) copolymer with different mole ratio of [TPA]/[DDP-PROXYL]

Figure S7 (a) TGA, (b) SEM image, (c) N₂ sorption isotherms at 77 K, (d) pore size distribution and (e) structure simulation of P(TPA-co-DDP-PROXYL) copolymer. (f) UV spectra of the electrolytes immersed by P(TPA-co-DDP-PROXYL) for 1 week.

Figure S8 Specific capacity of acetylene black at 20 mA g⁻¹.

Figure S9 SEM images of P(TPA-co-DDP-PROXYL) electrode with different cycle times at 500

mA g⁻¹

Figure S10 Water contact angle of electrode before and after cycling

Figure S11. CV curve at the scan rate of 0.5 mV s $^{-1}$ and (b) galvanotatic charge/discharge curves

for the first three cycles at 20 mA g ^{-1}of PAQS

Figure S12. The synthesis route of the *f*-PPTA

Figure S13 SEM images and pore size distributions of (a) PVDF-HFP, (b) PVDF-HFP/*f*-PPTA-1, (c) PVDF-HFP/*f*-PPTA-2, (d) PVDF-HFP/*f*-PPTA-3, (e) PVDF-HFP/*f*-PPTA-4 and (f) PVDF-

HFP/f-PPTA-5

Figure S14 (a) Porosity and electrolyte uptake analysis, and (b) liquid leakage curve of PVDF-

HFP/f-PPTA

Figure S15 Charge/discharge profiles at different current density of the entire polymer

rechargeable battery

		Data aanakility	Cyclic life		
	Reversibl		capacity rentantion	Discharge	
Samples	e capacity		(mAh g ⁻¹)@cycle	voltage	Ref
	(mAh g ⁻¹)	(mAh g ⁻¹)@current	number@current	(V)	
		density (mA g ⁻¹)	density (mA g ⁻¹)		
PTDATA	133.1	90.9@500	98.2@100@20	3.6	1
	105.7	97.6@2000	92.9@1170@differe	3.6	2
YPIPA	105.7		nt current densities		2
PTTPAB	87	84@500	77@150@100	3.7	3
	112	50 - 1 500	85@180@20	3.2	4
DANI-PYR	113	58@1500	60@600@500		4
PTPA-PO	134	90@500	121@100@20	3.8	5
PGVS	104	40@510	40@500@510	3.15	6
PPy-C-TEMPO	115	-	86@50@20	3.5	7
PTMA-co-GMA	104	82@550	103@50@55	3.6	8
Perylene	90	-	50@1800@-	3.8/3.3	9
PTPAFc	100.2	90@500	-	3.6	10
P1a	33	30@700	30@30000@700	3.6	11
p-DPPZ	170	125@200	125@500@200	4.1/3.3	12
PTMA	104.2	40@500	81@100@20	3.6	13
P(TPA-co-					
DDP-	127.3	100.9@2000	93.8@3000@500	3.7	This
PROXYL)			71.2@3000@2000		work

Table S1. Electrochemical performance comparison of polymer cathode materials in LIBs

Sample	Ionic conductivity σ (mS cm ⁻¹) 20°C		
P(VDF-HFP)	0.67 (+0.024)		
P(VDF-HFP)/f-PPTA-1	1.02 (+0.057)		
P(VDF-HFP)/f-PPTA-2	1.13 (+0.006)		
P(VDF-HFP)/f-PPTA-3	1.43 (+0.132)		
P(VDF-HFP)/f-PPTA-4	1.65 (+0.050)		
P(VDF-HFP)/f-PPTA-5	1.56 (+0.076)		
Clegard 2400	0.60		

 Table S2 Porosity, electrolyte uptake and ionic conductivity of P(VDF-HFP)/f-PPTA membrane

 and Clegard 2400

References

- 1. C. Su, H. He, L. Xu, K. Zhao, C. Zheng and C. Zhang, J. Mater. Chem. A, 2017, 5, 2701-2709.
- 2. C. Zhang, X. Yang, W. Ren, Y. Wang, F. Su and J.-X. Jiang, J. Power Sources, 2016, 317, 49-56.
- Z. Chen, W. Li, Y. Dai, N. Xu, C. Su, J. Liu and C. Zhang, *Electrochim. Acta*, 2018, 286, 187-194.
- 4. C. J. Yao, J. Xie, Z. Wu, Z. J. Xu, S. Zhang and Q. Zhang, *Chem-Asian J*, 2019, **14**, 2210-2214.
- 5. J. Xiong, Z. Wei, T. Xu, Y. Zhang, C. Xiong and L. Dong, *Polymer*, 2017, 130, 135-142.
- 6. T. Suga, H. Ohshiro, S. Sugita, K. Oyaizu and H. Nishide, *Adv. Mater.*, 2009, **21**, 1627-1630.
- 7. L. Xu, F. Yang, C. Su, L. Ji and C. Zhang, *Electrochim. Acta*, 2014, **130**, 148-155.
- 8. Shaoyang Wang, *ChemSusChem*, 2020, **13**, 2371–2378.
- 9. I. A. Rodriguez-Perez, C. Bommier, D. D. Fuller, D. P. Leonard, A. G. Williams and X. Ji, *ACS Appl. Mater. Inter.*, 2018, **10**, 43311-43315.
- 10. C. Su, Y. Ye, L. Xu and C. Zhang, J. Mater. Chem., 2012, 22, 22658.
- P. Acker, L. Rzesny, C. F. N. Marchiori, C. M. Araujo and B. Esser, *Adv. Funct. Mater.*, 2019, 29, 1906436.
- 12. G. Dai, X. Wang, Y. Qian, Z. Niu, X. Zhu, J. Ye, Y. Zhao and X. Zhang, *Energy Storage Mater.*, 2019, **16**, 236-242.
- 13. Y. Ou, Y. Zhang, Y. Xiong, Z. Hu and L. Dong, *Eur. Polym. J.*, 2021, 143, 110191.