Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Towards higher electrochemical stability of electrolytes: lithium salt design through *in silico* screening

Dale A. Osborne,^a Michael Breedon,^b Thomas Rüther,^c and Michelle J.S. Spencer *,a,d

a) School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia. b) CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia. c) CSIRO Energy, Private Bag 10, Clayton South, Victoria 3169, Australia d) ARC Centre of Excellence in Future Low-Energy Electronics Technologies, School of Science, RMIT University, Melbourne, Victoria 3001, Australia

Electronic Supplementary Information

 Table S1 – List of abbreviations for anion structures investigated in this study.

Abbreviation		Chemical Name
R_1	TFSI	bis((trifluoromethyl)sulfonyl)imide
R_2	FSI	bis(fluorosulfonyl)imide
R_3	FTFSI	(fluorosulfonyl)((trifluoromethyl)sulfonyl)imide
S_1	MSI	bis(methylsulfonyl)imide
S_2	ESI	bis(ethylsulfonyl)imide
S_3	BETI	bis((perfluoroethyl)sulfonyl)imide
S_4	TFESI	bis((2,2,2-trifluoroethyl)sulfonyl)imide
S_5	TbSI	bis(tert-butylsulfonyl)imide
S_6	NFSI	bis((1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-yl)sulfonyl)imide
S ₇	CSI	bis(cyanosulfonyl)imide
S ₈	CmSI	bis(cyanomethyl)sulfonyl)imide
S ₉	MOSI	bis(methoxysulfonyl)imide
A_1	HMSI	(hydrosulfonyl)(methylsulfonyl)imide
A ₂	FMSI	(fluorosulfonyl)(methylsulfonyl)imide
A ₃	HESI	(ethylsulfonyl)(hydrosulfonyl)imide
A_4	MESI	(ethylsulfonyl)(methylsulfonyl)imide
A_5	FPFESI	(fluorosulfonyl)((perfluoroethyl)sulfonyl)imide
A ₆	MTbSI	(tert-butylsulfonyl)(methylsulfonyl)imide
A ₇	TFNFSI	((1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-yl)sulfonyl)((trifluoromethyl)sulfonyl)imide
A ₈	FCSI	(cyanosulfonyl)(fluorosulfonyl)imide
A9	TFCSI	(cyanosulfonyl)((trifluoromethyl)sulfonyl)imide

		N	S ₁	S ₂	01	O ₂	O ₃	O ₄	R'	R''
						(<i>e</i>)				
R_1	LiTFSI	-1.26	2.27	2.27	-0.97	-0.97	-0.96	-0.96	-0.22	-0.22
R ₂	LiFSI	-1.23	2.56	2.56	-0.96	-0.96	-0.95	-0.95	-0.53	-0.53
R ₃	LIFTFSI	-1.24	2.27	2.56	-0.96	-0.97	-0.95	-0.96	-0.53	-0.22
S_1	LiMSI	-1.26	2.32	2.32	-1.03	-1.03	-1.01	-1.01	-0.15	-0.15
S ₂	LiESI	-1.26	2.33	2.33	-1.01	-1.01	-1.03	-1.04	-0.15	-0.15
S ₃	LiBETI	-1.25	2.30	2.30	-0.96	-0.96	-0.96	-0.96	-0.26	-0.26
S ₄	LITFESI	-1.26	2.34	2.34	-0.98	-0.98	-1.01	-1.01	-0.22	-0.22
S ₅	LiTbSI	-1.30	2.35	2.35	-1.01	-1.01	-1.02	-1.02	-0.17	-0.17
S ₆	LiNFSI	-1.28	2.40	2.40	-0.96	-0.96	-0.94	-0.94	-0.36	-0.36
S ₇	LiCSI	-1.22	2.33	2.33	-0.94	-0.94	-0.94	-0.94	-0.34	-0.34
S ₈	LiCmSI	-1.25	2.35	2.35	-0.98	-0.98	-1.01	-1.01	-0.24	-0.24
S ₉	LiMOSI	-1.27	2.54	2.55	-0.98	-0.99	-0.99	-0.98	-0.44	-0.44
A ₁	Lihmsi	-1.26	2.32	2.19	-1.01	-1.00	-1.03	-1.02	-0.04	-0.15
A ₂	LiFMSI	-1.25	2.55	2.32	-0.99	-1.00	-0.97	-1.00	-0.53	-0.14
A ₃	LiHESI	-1.26	2.19	2.32	-1.00	-1.03	-1.02	-1.01	-0.04	-0.15
A ₄	LiMESI	-1.26	2.33	2.32	-1.01	-1.01	-1.03	-1.03	-0.15	-0.15
A ₅	LIFPFESI	-1.24	2.56	2.30	-0.95	-0.96	-0.95	-0.96	-0.53	-0.26
A ₆	LiMTbSI	-1.28	2.34	2.33	-1.01	-1.03	-1.02	-1.02	-0.15	-0.17
A ₇	LITFNFSI	-1.27	2.39	2.28	-0.95	-0.95	-0.96	-0.96	-0.21	-0.38
A ₈	LiFCSI	-1.22	2.33	2.56	-0.95	-0.95	-0.95	-0.94	-0.53	-0.35
A ₉	LiTFCSI	-1.23	2.33	2.26	-0.96	-0.95	-0.96	-0.94	-0.20	-0.35

Table S2 – Anion natural charge for each atom of the sulfonyl core, and sum of the charges for each functional group,calculated from the M06-2X/6-311⁺⁺G(2d,p) geometry.

Table S3 – Lithium salt natural charge for each atom of the sulfonyl core, and sum of the charges for each functional group,calculated from the M06-2X/6-311⁺⁺G(2d,p) geometry.

		N	S.	S.,	0.	0.	0.	0.	Li	R'	R"
		(e)									
R ₁	LiTFSI	-1.24	2.28	2.28	-0.90	-0.90	-1.09	-1.09	0.95	-0.14	-0.14
R_2	LiFSI	-1.21	2.59	2.59	-0.89	-0.89	-1.08	-1.08	0.96	-0.50	-0.50
R_3	LIFTFSI	-1.22	2.27	2.59	-0.89	-0.90	-1.08	-1.10	0.95	-0.49	-0.14
S_1	LiMSI	-1.25	2.33	2.30	-0.95	-0.98	-1.13	-1.12	0.95	-0.08	-0.07
S ₂	LiESI	-1.25	2.33	2.30	-0.95	-0.99	-1.13	-1.12	0.95	-0.08	-0.06
S ₃	LiBETI	-1.21	2.30	2.30	-0.89	-0.90	-1.08	-1.08	0.94	-0.19	-0.17
S_4	LITFESI	-1.22	2.34	2.34	-0.93	-0.93	-1.09	-1.09	0.91	-0.17	-0.17
S ₅	LiTbSI	-1.28	2.34	2.36	-0.98	-0.97	-1.13	-1.14	0.95	-0.07	-0.08
S_6	LiNFSI	-1.26	2.41	2.41	-0.90	-0.90	-1.09	-1.08	0.95	-0.26	-0.27
S ₇	LiCSI	-1.20	2.34	2.34	-0.88	-0.88	-1.07	-1.07	0.96	-0.27	-0.27
S ₈	LiCmSI	-1.26	2.36	2.37	-0.93	-0.92	-1.08	-1.07	0.93	-0.18	-0.21
S9	LiMOSI	-1.23	2.53	2.56	-0.91	-0.93	-1.05	-1.08	0.94	-0.45	-0.39
A ₁	Lihmsi	-1.24	2.30	2.20	-0.97	-0.93	-1.12	-1.12	0.95	0.00	-0.06
A ₂	LiFMSI	-1.23	2.58	2.33	-0.89	-0.94	-1.08	-1.12	0.95	-0.53	-0.07
A ₃	LiHESI	-1.24	2.20	2.30	-0.93	-0.98	-1.12	-1.12	0.95	0.00	-0.06
A ₄	LiMESI	-1.25	2.30	2.33	-0.95	-0.99	-1.13	-1.12	0.95	-0.08	-0.06
A ₅	LIFPFESI	-1.20	2.59	2.29	-0.88	-0.89	-1.07	-1.08	0.94	-0.50	-0.19
A ₆	LiMTbSI	-1.25	2.32	2.34	-0.95	-0.99	-1.13	-1.12	0.95	-0.09	-0.06
A ₇	LITFNFSI	-1.25	2.39	2.28	-0.90	-0.90	-1.08	-1.07	0.94	-0.13	-0.29
A ₈	LiFCSI	-1.20	2.34	2.59	-0.88	-0.88	-1.08	-1.08	0.96	-0.50	-0.27
A ₉	Litfcsi	-1.22	2.34	2.27	-0.89	-0.88	-1.09	-1.08	0.95	-0.13	-0.28

			Ν	S ₁	S ₂	01	O ₂	O ₃	O ₄	Li	R'	R''
							(e)					
Ref.	R_1	LiTFSI	0.017	0.012	0.012	0.064	0.064	-0.138	-0.138	-0.046	0.076	0.076
	R_2	LiFSI	0.024	0.031	0.031	0.073	0.073	-0.129	-0.129	-0.044	0.034	0.034
	R_3	LiFTFSI	0.025	0.003	0.030	0.068	0.069	-0.132	-0.134	-0.046	0.036	0.081
	S_1	LiMSI	0.015	0.010	-0.020	0.082	0.051	-0.123	-0.107	-0.052	0.064	0.081
	S_2	LiESI	0.016	0.008	-0.021	0.059	0.028	-0.102	-0.089	-0.053	0.068	0.086
a	S_3	LiBETI	0.039	-0.006	0.000	0.067	0.058	-0.122	-0.126	-0.062	0.070	0.083
tric	S_4	Litfesi	0.035	-0.002	-0.002	0.058	0.058	-0.084	-0.084	-0.086	0.052	0.052
.əu	S_5	LiTbSI	0.026	-0.013	0.007	0.028	0.046	-0.111	-0.118	-0.052	0.100	0.086
Symr	S_6	LiNFSI	0.018	0.009	0.009	0.051	0.052	-0.144	-0.143	-0.052	0.103	0.097
	S_7	LiCSI	0.020	0.015	0.015	0.059	0.059	-0.131	-0.131	-0.044	0.070	0.070
	S_8	LiCmSI	-0.009	0.017	0.021	0.048	0.054	-0.077	-0.061	-0.072	0.054	0.026
	S ₉	LiMOSI	0.039	-0.009	0.016	0.068	0.063	-0.061	-0.095	-0.063	-0.010	0.054
	A_1	Lihmsi	0.018	-0.019	0.012	0.036	0.067	-0.087	-0.099	-0.053	0.038	0.087
	A_2	LiFMSI	0.019	0.023	0.009	0.094	0.059	-0.113	-0.121	-0.047	0.008	0.068
a	A_3	LiHESI	0.020	0.012	-0.021	0.066	0.055	-0.100	-0.110	-0.054	0.037	0.095
tric	A_4	LiMESI	0.017	-0.022	0.009	0.060	0.028	-0.103	-0.088	-0.053	0.063	0.089
me	A_5	LiFPFESI	0.038	0.025	-0.005	0.071	0.072	-0.124	-0.117	-0.061	0.030	0.071
хл	A_6	LiMTbSI	0.024	-0.023	0.004	0.060	0.041	-0.117	-0.106	-0.053	0.062	0.107
As	A ₇	LitfnfSI	0.021	0.001	-0.002	0.045	0.043	-0.120	-0.111	-0.058	0.089	0.091
	A ₈	LiFCSI	0.020	0.011	0.031	0.071	0.065	-0.126	-0.135	-0.045	0.030	0.078
	A9	LiTFCSI	0.019	0.012	0.009	0.064	0.061	-0.130	-0.136	-0.045	0.074	0.073

Table S4 – Change in net charges (Δq) between the most stable anion and Li salt structure.

Equation S1 - Calculation of lithium metal theoretical capacity.

$$Q = \frac{(1e \times 96,485.3321 \ C.mol^{-1})}{6.94 \ g.mol^{-1} \times 3.6 \ C.mAh^{-1}} = 3,861.87 \approx 3,860 \ mAh.g^{-1}$$

Figure S1 – Conformer scan and lithiation site screening of R_1 (TFSI⁻), depicting the 5 calculated unique adsorption sites and binding energies. The most stable site is outlined in green.

Figure S2 – Conformer scan and lithiation site screening of R_2 (FSI⁻), depicting the 5 calculated unique adsorption sites and binding energies. The most stable site is highlighted in green.

Figure S3 – Conformer scan and lithiation site screening of R₃ (FTFSI⁻), depicting the 9 calculated unique adsorption sites and binding energies. The most stable site is outlined in green.

Figure S4 – Conformer scan and lithiation site screening of S_1 (MSI⁻), depicting the 5 calculated unique adsorption sites and binding energies. The most stable site is outlined in green.

Figure S5 – Conformer scan and lithiation site screening of S_2 (ESI⁻), depicting the 11 calculated unique adsorption sites and binding energies. The most stable site is outlined in green.

Figure S6 – Conformer scan and lithiation site screening of S_3 (BETI⁻), depicting the 8 calculated unique adsorption sites and binding energies. The most stable site is outlined in green.

Figure S7 – Conformer scan and lithiation site screening of S_4 (TFESI⁻), depicting the 5 calculated unique adsorption sites and binding energies. The most stable site is highlighted in green.

Figure S8 – Conformer scan and lithiation site screening of S_5 (TbSI⁻), depicting the 5 calculated unique adsorption sites and binding energies. The most stable site is highlighted in green.

Figure S9 – Conformer scan and lithiation site screening of S₆ (NFSI⁻), depicting the 9 calculated unique adsorption sites and binding energies. The most stable site is outlined in green.

Figure S10 – Conformer scan and lithiation site screening of S₇ (CSI⁻), depicting the 6 calculated unique adsorption sites and binding energies. The most stable site is outlined in green.

Figure S11 – Conformer scan and lithiation site screening of S₈ (CmSI⁻), depicting the 9 calculated unique adsorption sites and binding energies. The most stable site is outlined in green.

Figure S12 – Conformer scan and lithiation site screening of S_9 (MOSI⁻), depicting the 11 calculated unique adsorption sites and binding energies. The most stable site is outlined in green.

Figure S13 – Conformer scan and lithiation site screening of A₁ (HMSI⁻), depicting the 9 calculated unique adsorption sites and binding energies. The most stable site is outlined in green.

Figure S14 – Conformer scan and lithiation site screening of A_2 (FMSI⁻), depicting the 9 calculated unique adsorption sites and binding energies. The most stable site is highlighted in green.

Figure S15 – Conformer scan and lithiation site screening of A_3 (HESI⁻), depicting the 10 calculated unique adsorption sites and binding energies. The most stable site is outlined in green.

Figure S16 – Conformer scan and lithiation site screening of A4 (MESI-), depicting the 9 calculated unique adsorption sites and binding energies. The most stable site is outlined in green.

Figure S17 – Conformer scan and lithiation site screening of A_5 (FPFESI⁻), depicting the 13 calculated unique adsorption sites and binding energies. The most stable site is outlined in green.

Figure S18 – Conformer scan and lithiation site screening of A_6 (MTbSI⁻), depicting the 10 calculated unique adsorption sites and binding energies. The most stable site is outlined in green.

Figure S19 – Conformer scan and lithiation site screening of A₇ (TFNFSI⁻), depicting the 14 calculated unique adsorption sites and binding energies. The most stable site is outlined in green.

Figure S20 – Conformer scan and lithiation site screening of A8 (FCSI-), depicting the 10 calculated unique adsorption sites and binding energies. The most stable site is outlined in green.

Figure S21 – Conformer scan and lithiation site screening of A_9 (TFCSI⁻), depicting the 11 calculated unique adsorption sites and binding energies. The most stable site is outlined in green.

Figure S22 – Calculated electrochemical windows for the reference, symmetric and asymmetric salts.