Electronic Supplementary Information

Mn single atom catalyst with Mn-N₂O₂ sites integrated into carbon

nanosheets for efficient electrocatalytic CO₂ reduction

Wenfei Dong¹, Nan Zhang¹, Sanxiu Li¹, Shixiong Min², Juan Peng^{1*}, Wanyi Liu^{1*}, Dongping Zhan³, Hongcun Bai¹

¹ School of Chemistry and Chemical Engineering, State Key Laboratory of Highefficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, Ningxia, 750021, P.R. China.

²School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China.

³Department of Chemistry, College of Chemistry and Chemical Engineering; and Department of Mechanical and Electrical Engineering, School of Aerospace Engineering, Xiamen University, Xiamen 361005, China.

**Corresponding author: pengjuan@nxu.edu.cn; liuwy@nux.edu.cn.*

Figure S1. (a) XRD, (b)Raman spectra, (c) XPS survey spectra of NO/CNs, Mn-NO/CNs-1100, Mn-NO/CNs, and Mn-NO/CNs-900, (d) XPS Mn 2p spectrum of Mn-NO/CNs.

Figure S2. XPS N 1s spectrum of (a) NO/CNs, (c) Mn-NO/CNs-900, and (e) Mn-NO/CNs-1100; XPS O 1s spectrum of (b) NO/CNs, (d) Mn-NO/CNs-900, and (f) Mn-NO/CNs-1100.

Figure S3. The corresponding atomic percentage of different N-substance (a) and O-species (b) fitted according to the XPS curve of the sample.

Figure S4. (a) LSV curves of Mn-NO/CNs-900, Mn-NO/CNs, and Mn-NO/CNs -1100 the catalysts on carbon paper in Ar- or CO₂-saturated 0.5 M KHCO₃ solution at the scan rate of 5 mV s⁻¹, with a catalyst loading of 0.56 mg cm⁻². (b) Current response of Mn-NO/CNs in 0.5 M KHCO₃ saturated with CO₂; (c) Total FE of Mn-NO/CNs catalyst at different potentials in an H-type electrolytic cell (0.5 M KHCO₃); (e) Potential dependent FE of CO formation; (f) Potential dependent FE of H₂ formation.

Figure S5. (a) Stability test of Mn-NO/CNs in H-type electrolytic cell (0.5 M KHCO₃ electrolyte) at -0.46 V (V vs. RHE); (b) The relationship between current density difference (ΔJ) and scanning rate; (c) The impedance spectra of the catalyst at carbon paper obtained under CO₂RR (-0.46 V vs. RHE) condition (frequency range: 0.1 MHz~10⁻² Hz); (d) Tafel diagrams.

Figure S6. Cycle voltammetry curves of (a) Mn-NO/CNs-900, (b) Mn-NO/CNs, (c) Mn-NO/CNs-1100 and (d) NO/CNs.

Figure S7. SEM image of Mn-NO/CNs catalyst after 70 hours of electrolysis.

Figure S8. Top view configurations of two Mn-N₂O₂ types. The gray, blue, purple, and red spheres represent C, N, Mn, and O atoms, respectively.

Figure S9. The adsorption configuration of *CO and *COOH on Mn-N₃O. The gray, blue, purple, and red spheres represent C, N, Mn, and O atoms, respectively.

Figure S10. The adsorption configuration of *CO and *COOH on Mn-N₂O₂. The gray, blue, purple, and red spheres represent C, N, Mn, and O atoms, respectively.

Figure S11. The adsorption configuration of *CO and *COOH on Mn-NO₃. The gray, blue, purple, and red spheres represent C, N, Mn, and O atoms, respectively.

Figure S12. The adsorption configuration of *CO and *COOH on N_2O_2 . The gray, blue, purple, and red spheres represent C, N, Mn, and O atoms, respectively.

Supplementary Tables

Catalysts	Element content/%(at%)				
	C at %	N at %	O at %		
Mn-NO/CNs-900	86.66	4.51	8.82		
Mn-NO/CNs	87.12	4.23	8.30		
Mn-NO/CNs-1100	93.01	2.46	4.52		
NO/CNs	90.29	5.88	3.83		

 Table S1. X-ray photoelectron spectrum analysis of the Mn-NO/CNs-900, Mn-NO/CNs, Mn-NO/CNs-1100 and NO/CNs.

Table S2. The peak quantification of XPS fitted N1s and O 1s spectra of the Mn-NO/CNs-900,
Mn-NO/CNs-1000, Mn-NO/CNs-1100 and NO/CNs-1000.

Catalysts	Fitting of N moieties/atom %					Fitting of O		
						moie	ties/atom	1%
	pyridinic-	pyrrolic-	graphitic-	N-	Mn-N	С-О,	OH	Mn-
	Ν	Ν	Ν	oxidized	at %	O=C-O		Ο
	at %	at %	at %	at %				
Mn-NO/CNs-	32.60	23.21	14.38	3.49	26.30	19.15	50.18	30.67
900								
Mn-NO/CNs	26.54	18.17	24.68	8.88	21.73	35.20	33.80	31.00
Mn-NO/CNs-	17.00	21.44	37.82	7.67	16.06	26.79	35.35	19.11
1100								
NO/CNs	30.75	45.30	18.77	5.17	0	33.1	66.9	0

Table S3. EXAFS fitting results of Mn-NO/CNs.

$S_0^2 = 0.73$						
	shell	CN	R(Å)	σ^2	ΔE_0	R factor
	Mn-O	6	2.19±0.01	0.0076	_	
MnO	Mn-Mn	6	3.09±0.01	0.0047	0.4±1.1	0.0072
	Mn-Mn1	6	3.19±0.01	0.0046		
sample	Mn-NO/CNs	3.7±0.6	2.18±0.04	0.0052	1.2±3.3	0.0150

^{*a*}*N*: coordination numbers; ^{*b*}*R*: bond distance; ^{*c*} σ^2 : Debye-Waller factors; ^{*d*} ΔE_0 : the inner potential correction. *R* factor: goodness of fit. S_0^2 was set to 0.70, according to the experimental EXAFS fit of Fe foil reference by fixing CN as the known crystallographic value; δ : percentage.

Catalyst	Electrolyte	Potential for	СО	Stability	Ref.
		FE _{max} (vs.	maximum	(h)	
		RHE)	FE		
Fe/NG	0.1 M KHCO3	-0.60 V	80.0%	10	1
DNG-SAFe	0.1 M KHCO ₃	-0.75 V	90.0%	20	2
Fe-N/O-doped	0.1 M KHCO3	-0.57 V	96.0 %	22	3
carbon					
Mn–C ₃ N ₄ /CNT	0.5 M KHCO ₃	-0.44 V	98.8%	20	4
(Cl, N)-Mn/G	0.5 M KHCO ₃	-0.49 V	97.0%	12	5
CoN5/HNPCSs	0.5 M KHCO ₃	-0.49 V	94.0%	10	6
Bi SAs/NC	0.1 M NaHCO ₃	-0.39 V	97.0%	4	7
Cu SAs/NC	0.1 M KHCO3	-0.70V	92.0%	30	8
Ni-N ₃ -C	0.5 M KHCO ₃	-0.65V	95.6%	10	9
ACP/S-N-Ni	0.5 M KHCO ₃	-0.77 V	91.0%	14	10
Ni SAs/N-C	0.5 M KHCO ₃	-0.89 V	71.9%	-	11
FeNPCN	0.1 M KHCO3	-0.50 V	94.0%	12	12
Co ₁ -N ₄	0.1M KHCO ₃	-0.80 V	82.0%	10	13
Ni ₁ -N-C	0.5M KHCO ₃	-0.80 V	96.8%	10	14
Mn-NO/CNs	0.5 M KHCO ₃	-0.46 V	96.0%	20	This
					work

 Table S4. Comparison of the Performance of Mn-NO/CNs with Other Single Atom Catalysts and

 Supported Molecular Complexes for CO₂RR.

Fe/NG: atomic iron dispersed on nitrogen-doped graphene; DNG-SAFe: intrinsic defect-rich graphene-like porous carbon embedded with single-atom Fe–N₄ sites; $g-C_3N_4$: graphitic carbon nitride; CNTs: carbon nanotubes; G: graphene; HNPCSs: hollow N-doped porous carbon spheres; Bi SAs/NC: single Bi atoms on N-doped carbon networks; Cu SAs/ NC: single Cu atoms dispersed on N-doped carbon substrate; ACP: activated carbon paper; FeNPCN: Fe and N doping porous carbon nematosphere; Co₁-N₄: four-coordinated N on N-doped porous carbon; Ni₁-N-C: single-atom metals implanted in N-doped carbon.

	$(1\Delta S, 1 - 500 \text{ K})$, and free energy (G) for CO ₂ , H ₂ , H ₂ O, and CO.					
	E_{DFT} (eV)	ZPE	TS	G		
CO ₂	-23.00	0.32	0.66	-23.34		
СО	-14.80	0.14	0.61	-15.27		
H ₂	-6.76	0.28	0.40	-6.87		
H ₂ O	-14.22	0.59	0.58	-14.22		

Table S5. DFT total energy (E_{DFT}), zero-point energy (ZPE), entropy multiplied by temperature (T Δ S, T = 300 K), and free energy (G) for CO₂, H₂, H₂O, and CO.

NO ₃ -Mn	Е	ZPE	TS	G
*	-883.24			-883.24
*COOH	-910.10	0.61	0.18	-909.68
*CO	-899.69	0.21	0.13	-899.61
N ₂ O ₂ -Mn	Е	ZPE	TS	G
*	-887.20			-887.20
*COOH	-913.94	0.61	0.21	-913.55
*CO	-903.35	0.21	0.15	-903.29
N ₃ O-Mn	Е	ZPE	TS	G
*	-890.66			-890.66
*СООН	-917.36	0.62	0.22	-916.96
*CO	-906.82	0.21	0.15	-906.76
N ₂ O ₂ -pure	Е	ZPE	TS	G
*	-878.58			-878.58
*COOH	-905.15	0.68	0.18	-904.65
*CO	-893.54	0.15	0.23	-893.61

Table S6. DFT total energy (E_{DFT}), zero-point energy (ZPE), entropy multiplied by temperature (T Δ S, T = 300 K), and free energy (G) at U = 0 versus RHE and adsorption energies of CO₂ reduction reaction intermediates on Mn-NO₃, Mn-N₂O₂, Mn-N₃O and N₂O₂.

References

- C. Zhang, S. Yang, J. Wu, M. Liu, S. Yazdi, M. Ren, J. Sha, J. Zhong, K. Nie, A.S. Jalilov, Z. Li, H. Li, B.I. Yakobson, Q. Wu, E. Ringe, H. Xu, P.M. Ajayan and J.M. Tour, *Adv. Energy Mater.*, 2018, 8, 1703487.
- 2. W. Ni, Z. Liu, Y. Zhang, C. Ma, H. Deng, S. Zhang and S. Wang, Adv. Mater., 2021, 33, 2003238.
- 3. X. Wang, Y. Pan, H. Ning, H. Wang, D. Guo, W. Wang, Z. Yang, Q. Zhao, B. Zhang, L. Zheng, J. Zhang and M. Wu, *Appl. Catal.*, *B*, 2020, 266, 118630.
- 4. J. Feng, H. Gao, L. Zheng, Z. Chen, S. Zeng, C. Jiang, H. Dong, L. Liu, S. Zhang and X. Zhang, Nat. Commun., 2020, 11, 4341.
- B. Zhang, J. Zhang, J. Shi, D. Tan, L. Liu, F. Zhang, C. Lu, Z. Su, X. Tan, X. Cheng, B. Han, L. Zheng and J. Zhang, *Nat. Commun.*, 2019, **10**, 2980.
- 6. Y. Pan, R. Lin, Y. Chen, S. Liu, W. Zhu, X. Cao, W. Chen, K. Wu, W.-C. Cheong and Y. Wang, J. Am. Chem. Soc., 2018, 140, 4218-4221.
- 7. E. Zhang, T. Wang, K. Yu, J. Liu, W. Chen, A. Li, H. Rong, R. Lin, S. Ji and X. Zheng, J. Am. Chem. Soc., 2019, 141, 16569-16573.
- F.Q. Yang, X.Y. Mao, M.F. Ma, C. Jiang, P.X. Zhang, J. Wang, Q. Deng, Z.L. Zeng and S.G. Deng, *Carbon*, 2020, 168, 528-535.
- 9. Y. Zhang, L. Jiao, W. Yang, C. Xie and H.L. Jiang, Angew. Chem., Int. Ed., 2021, 60, 7607-7611.
- S. Li, M. Ceccato, X. Lu, S. Frank, N. Lock, A. Roldan, X.-M. Hu, T. Skrydstrup and K. Daasbjerg, J. Mater. Chem. A, 2021, 9, 1583-1592.
- 11. C. Zhao, X. Dai, T. Yao, W. Chen, X. Wang, J. Wang, J. Yang, S. Wei, Y. Wu and Y. Li, *J. Am. Chem. Soc.*, 2017, **139**, 8078-8081.
- 12. H. Zhong, F. Meng, Q. Zhang, K. Liu and X. Zhang, Nano Research, 2019, 12, 2318-2323.

- 13. Z. Geng, Y. Cao, W. Chen, X. Kong, Y. Liu, T. Yao and Y. Lin, Appl. Catal., B, 2019, 240, 234-240.
- 14. L. Jiao, W. Yang, G. Wan, R. Zhang, X. Zheng, H. Zhou, S. H. Yu and H. L. Jiang, *Angew. Chem.*, *Int. Ed.*, 2020, **59**, 20589-20595.