Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supporting Information

The Identified Intrinsic Active Sites for Efficient and Stable Bi-functional

Catalyst N-MoS₂·Ni₃S₂/NiS: Mo-N Structure and Ni-S Structure on

Heterogeneous Interface Synergistically Enhance Water Splitting

Yong Gao^a, Jingjing Li^a, Hao Gong^b, Chuanxiang Zhang^c, Haiyun Fan^a, Xin Xie^a, Xianli Huang^a, Hairong Xue^a, Tao Wang^a, *, Jianping He^a, *

^a College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.

^b Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, P. R. China.

^c School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China.

*Corresponding author Email: wangtao0729@nuaa.edu.cn (T. Wang); jianph@nuaa.edu.cn (J. He).

Experimental Section

1.1 Materials

All raw materials were purchased without further purification. Ammonium molybdate $((NH_4)_6Mo_7O_{24}\cdot 4H_2O, AR, 99\%)$, thioacetamide $(CH_3CSNH_2, AR, 99\%)$, sodium thiosulfate $(Na_2S_2O_3\cdot 5H_2O, AR, 99\%)$ were purchased from Macklin Biochemical Co. Ltd. (Shanghai, China). DI water was obtained in the laboratory. And NF (1 cm × 2 cm × 0.5 mm) was obtained from commercial sources.

1.2 Synthesis of catalysts

Synthesis of N-MoS₂·Ni₃S₂/NiS: Firstly, $((NH_4)_6Mo_7O_{24}\cdot 4H_2O$ (0.13 mmol, 0.158 g) and CH₃CSNH₂ (2.7 mmol, 0.203 g) were weighed and transferred to 30 mL DI water, and the homogeneous precursor solution was obtained by magnetic stirring for 60 minutes. Subsequently, the NF was immersed in 1.0 M HCl(aq) for 45 minutes under ultrasonic treatment to remove the surface

oxidation, then which was rinsed by DI water and ethanol, then, dried for 10 h in an vacuum oven at 60 °C. Furthermore, after preprocessed NF was added into the above precursor solution and transferred into 50 mL Teflon-lined autoclave, hydrothermal reaction for 12 h at 180 °C. After cooling, the catalyst was taken out and washed thoroughly in turn DI water and ethanol, then dried for 10 h in an vacuum oven at 60 °C. Finally, the N-MoS₂·Ni₃S₂/NiS was performed electrochemical activation through three-electrode system in 1.0 M KOH(aq), importantly, the final long time electrochemical activation step was carry out before HER test is performed, not the OER test. And the loading massing of N-MoS₂·Ni₃S₂/NiS is about 4 mg·cm⁻². In order to investigate the effect of Mo-N bond for HER performance, several catalysts were synthesized at different hydrothermal temperature (120, 150, 180, 210 °C) through maintaining other condition constant. In addition, the N-MoS₂·Ni₃S₂/NiS-180°C also soaked in different concentrations H₃PO₄(aq) (0.0, 0.5, 1.0 M H₃PO₄) to further investigate the change of Mo-N bond relative rations.

Synthesis of N,Mo-Ni₃S₂/NiS and Ni₃S₂/NiS: Maintaining other conditions constant, $(NH_4)_6Mo_7O_{24}\cdot 4H_2O$ (0.13 mM, 0.158 g) acts as Mo and N source and $Na_2S_2O_3\cdot 5H_2O$ (1.35 mM, 0.338 g) acts as S source to synthesize N,Mo-Ni₃S₂/NiS, and only CH₃CSNH₂ (2.7 mM, 0.203 g) was used to synthesize Ni₃S₂/NiS.

Preparation of the Pt/C-NF and RuO₂-NF: 4 mg Pt, 1 mg carbon black and 1 mg PVDF were mixed, then adding appropriating amount of deionized water and grinding evenly, finally put into 60 °C oven drying to obtain Pt/C-NF. The preparation way for RuO₂-NF is as same as the Pt/C-NF.

1.3 Morphology and structure characterization

The crystal phase of N-MoS₂·Ni₃S₂/NiS and control samples were confirmed by XRD (Bruker D8 Advance) at a scanning rate of 5 °·min⁻¹. The surface morphology and hierarchical structure were

observed respectively by field emission scanning electron microscope (FE-SEM, Hitachi S-4800) and high-resolution transmission electron microscope (HR-TEM, FEI Tecnai G2F20 microscope). The thickness of N-MoS₂·Ni₃S₂/NiS was testified precisely by atomic force microscope (AFM, Bruker Multimode 8). The element chemical state and valence bond structure of N-MoS₂·Ni₃S₂/NiS and control samples were analyzed comprehensively by X-ray photoelectro spectroscopy (XPS) with a Kratos Axis Ultra DLD electron spectrometer, and all the binding energies were standardized by C 1s peak energy at 284.6 eV. The N₂ adsorption-desorption isotherms were measured at 77 K by an ASAP 2460 system to calculate the specific surface area and analyze the pore size distribution features.

1.4 Electrochemical performance characterization

All electrochemical data were collected on a CHI 760e electrochemical workstation (CHI Instruments, Inc. Shanghai, China). And the classic three-electrode system was used, including carbon rod was served as counter electrode, a SCE for HER and Hg/HgO for OER as reference electrode, and the prepared catalysts as working electrode. Linear sweep voltammetry (LSV) curves were performed at a scan rate of 5 mV·s⁻¹ in 1.0 M KOH electrolyte with IR-compensation, the HER and OER LSV were measured respectively in N₂-/O₂-saturated electrolyte, and the CV activation was performed before LSV test. Importantly, in order to eliminate the influence of nickel oxidation peak for catalytic performance evaluation, adopting backward sweep way to collect OER LSV data. According to the Nernst equation: $E_{RHE} = E_{Hg/HgO} + 0.05916 \times pH + 0.098V$ and $E_{RHE} = E_{SCE} + 0.05916 \times pH + 0.244V$, the all potentials have been converted to RHE. The Electrochemical impedance spectroscopy (EIS) was performed with a frequency ranges from 0.01 to 100000Hz. And the ECSA was estimated through evaluating double-layer capacitance (C_a), which was calculated by

different scan rate cyclic voltammetry (CV) from 20 to 100 mV·s⁻¹ in the non-Faraday potential range. The catalyst stability was evaluated by both Accelerated Stressing Tests (AST) test in the Faraday potential range and Chronoamperometry (i-t) test at the current density of 10 mA·cm⁻².

1.5 Density Functional Theory (DFT) Calculations

We adopted the Vienna Ab initio Simulation Package (VASP) to carry out all first principle Density Functional Theory (DFT) calculation, according to the generalized gradient approximation (GGA) of the Perdew-Burke-Ernzerhof (PBE) formulation ¹, and the projector augmented (PAW) method ^{2,3}. We set the wave base cutoff to 450 eV, with a vacuum spacing of at last 15 Å perpendicular to the direction of the catalyst. And the Brillouin zone integration is performed using $3\times3\times1$ Monkhorst-Pack k-point sampling for a structure ⁴. The convergence threshold of electronic self-consistent was set as 10^{-5} eV, and the convergence threshold of geometric structure optimization was set as 0.05 eV/Å. Finally, we calculated the free energy using the following formula ^{5,6}:

$$G = E + ZPE - TS$$

where G, E, ZPE and TS represent respectively the free energy, total energy obtained from theoretical calculations, zero point energy and entropic contributions.

Fig. S1. The SEM images of N-MoS₂·Ni₃S₂/NiS and control samples. (a-c) N-MoS₂·Ni₃S₂/NiS, (d-f) N,Mo-Ni₃S₂/NiS, (g-i) Ni₃S₂/NiS.

The control samples N,Mo-Ni₃S₂/NiS (Fig. S1 d-f) and Ni₃S₂/NiS (Fig. S1 g-i) shows nanorod array and nanosheet array morphology. Nevertheless, the N-MoS₂·Ni₃S₂/NiS shows ultra-thin hierarchical structure with large specific surface area and electrochemical specific surface area, which could provide more active catalytic sites.

Fig. S2. AFM Height images and line-scan profiles images of N-MoS₂·Ni₃S₂/NiS.

The AFM height images reveal precisely that the average thickness is 5.2 nm for N- $MoS_2 \cdot Ni_3S_2/NiS$.

Fig. S3. (a, b) TEM images of N-MoS₂·Ni₃S₂/NiS.

Fig. S4. The HR-TEM image of N-MoS $_2$ ·Ni $_3$ S $_2$ /NiS.

Fig. S5. HRTEM image of N-MoS₂·Ni₃S₂/NiS.

Fig. S6. XRD spectrums of (a) N,Mo-Ni₃S₂/NiS, (b) Ni₃S₂/NiS.

Fig. S7. (a) HER LSV curves, (b) corresponding performance plot at 10 and 50 mA·cm⁻² of N- MoS_2 ·Ni₃S₂/NiS were synthesized at different temperature. (d) HER LSV curves, (e) corresponding performance plot at 10 and 50 mA·cm⁻² N-MoS₂·Ni₃S₂/NiS were synthesized through different molar ration of S to Mo at 180°C.

Through earlier experiment exploration, the optimum N-MoS₂·Ni₃S₂/NiS was synthesized at 180°C hydrothermal temperature when molar ration of S to Mo is 3 to 1. Meanwhile, the optimum N-MoS₂·Ni₃S₂/NiS exhibits minimum Tafel slope (95.2 mV·dec⁻¹), much lower than other samples, and only slightly higher than Pt/C-NF (54.6 mV·dec⁻¹).

Fig. S8. (a) HER performance plot of N-MoS₂·Ni₃S₂/NiS and other control samples at 10 mA·cm⁻² and 50 mA·cm⁻². (b) Corresponding Tafel slope.

Fig. S9. HER Cyclic voltammetry of (a) N-MoS₂·Ni₃S₂/NiS, (b) N,Mo-Ni₃S₂/NiS, (c) Ni₃S₂/NiS, (d) Ni Foam at scan rate of 20, 40, 60, 80, 100 mV·s⁻¹ in the potential windows of 0.1V - 0.3V (vs. RHE). (e) Corresponding the double-layer capacitance (C_{dl}).

Electrochemical specific surface area (ECSA) reflects the intrinsic activity of catalyst, which can be evaluated by C_{dl} through the equation, ECSA = Cs / C_{dl} . Herein, we adopt C_{dl} to evaluated N-MoS₂·Ni₃S₂/NiS intrinsic catalytic activity. The Cdl is 131 mF·cm⁻² for N-MoS₂·Ni₃S₂/NiS, 83.8 mF·cm⁻² for N,Mo-Ni₃S₂/NiS, 8.0 mF·cm⁻² for Ni₃S₂/NiS, and 2.1 mF·cm⁻² for Ni Foam.

Fig. S10. HER LSV curves of N-MoS₂·Ni₃S₂/NiS before and after 6000 CVs.

 $MoS_2 \cdot Ni_3S_2/NiS-180^{\circ}C$ exhibits outstanding stability, HER performance was no decayed after 6000 CVs at 10 mA·cm⁻².

Fig. S11. (a) CV curve, (b) Forward/backward sweep OER LSV curve of N-MoS₂·Ni₃S₂/NiS.

From **Fig. S10**, the same characteristics appears in CV curve and LSV polarization curves. Which shows LSV polarization curve collected through backward sweep not only eliminate nickel oxidation peaks influence, but also evaluate well OER performance of N-MoS₂·Ni₃S₂/NiS.

Fig. S12. (a) OER performance plot of N-MoS₂·Ni₃S₂/NiS and other control samples at 10 and 50 mA·cm⁻². (b) Corresponding Tafel slope.

Fig. S13. OER Cyclic voltammetry of (a) N-MoS₂·Ni₃S₂/NiS, (b) N,Mo-Ni₃S₂/NiS, (c) Ni₃S₂/NiS, (d) Ni Foam at scan rate of 20, 40, 60, 80, 100 mV·s⁻¹ in the potential windows of 1.03V - 1.13V (vs. RHE). (e) Corresponding the double-layer capacitance (C_{dl}).

The C_{dl} is 22.6 mF·cm⁻² for N-MoS₂·Ni₃S₂/NiS, 9.3 mF·cm⁻² for N,Mo-Ni₃S₂/NiS, 6.2 mF·cm⁻² for Ni₃S₂/NiS, and 2.5 mF·cm⁻² for Ni Foam. The value of N-MoS₂·Ni₃S₂/NiS is about 2.4, 3.6 and 9.1 times higher than N,Mo-Ni₃S₂/NiS, Ni₃S₂/NiS and Ni Foam, respectively.

Fig. S14. (a) BET specific surface area of $N-MoS_2 \cdot Ni_3S_2/NiS$, NF. (b) Mesoporous pore size distribution plot of $N-MoS_2 \cdot Ni_3S_2/NiS$, NF.

The specific surface area of N-MoS₂·Ni₃S₂/NiS (16.905 m²/g) is 497 times higher than NF (0.034 m²/g), consistent with continuous ultra-thin hierarchical morphology. And mesoporous pore size is primarily concentrate on 15 nm. The BET results with C_{dl} together show N-MoS₂·Ni₃S₂/NiS has larger specific surface area and electrochemical specific surface area to load more active sites, to further improve oxygen evolution reaction performance.

Fig. 15. (a) EIS curves of N-MoS₂·Ni₃S₂/NiS, N,Mo-Ni₃S₂/NiS, Ni₃S₂/NiS and NF at 10 mA·cm⁻² for OER. (b) OER LSV curves before and after 2000 cycles of CV.

The N-MoS₂·Ni₃S₂/NiS has the smallest radius in **Fig. S14**a indicating that it has the smallest impedance, compared to other control samples

Fig. S16. The overall water splitting overpotential of N-MoS₂·Ni₃S₂/NiS||N-MoS₂·Ni₃S₂/NiS and Pt/C||RuO₂ at 10 mA·cm⁻² and 50 mA·cm⁻².

Fig. S17. (a) The XRD spectrum, and (b) the XPS spectrum for N-MoS₂·Ni₃S₂/NiS after HER and OER stability test.

Fig. S18. The N 1s XPS spectrum of N-MoS₂·Ni₃S₂/NiS were prepared at (a) 120°C, (b) 150°C, (c) 180°C, (d) 210°C.

Fig. S19. The plot of exchange current density (j_0) with respect to N-type rations (%).

Fig. S20. The OER LSV polarization curves of N-MoS₂·Ni₃S₂/NiS befor and after CV activation.

Fig. S21. Structual model diagram from different perspectives. Top view of (a) Ni_3S_2/NiS , and (b) N-MoS₂. Side view of (c) Ni_3S_2/NiS , and (d) N-MoS₂.

Fig. 22. The OER 4e⁻ process of (a) NiS side, (b) Ni₃S₂ side, (c) Mo-S site and (d) Mo-N site.

Fig. S23. XRD spectrum of N-MoS₂·Ni₃S₂/NiS immersed in 0.0 M H3PO4.

Fig. S24. The N 1s XPS spectrum of N-MoS₂·Ni₃S₂/NiS were immersed in (a) 0.0 M, (b) 0.5 M, (c) $1.0 \text{ M} \text{ H}_3\text{PO}_4$ for 13 h, respectively.

Fig. S25. (a) The HER overpotential of N-MoS₂·Ni₃S₂/NiS immersed in different concentration $H_3PO_4(aq)$ for 13 h at room temperature. (b) Corresponding Tafel slope.

Table	S1.	Total	Ν	content	and	different	N-type	relative	rations	for	$N-MoS_2 \cdot Ni_3S_2/NiS$	were
synthesized at 120, 150, 180, 210°C, respectively.												

Catalyst	Total N content	Different N-type relative rations				
Catalyst	Total IN Content	Mo-N bond	Pyridinic N	Pyrrolic N		
N-MoS ₂ ·Ni ₃ S ₂ /NiS-120°C	4.49%	12.35%	1.72%	85.93%		
$N-MoS_2 \cdot Ni_3S_2/NiS-150^{\circ}C$	3.94%	21.97%	36.12%	41.91%		
N-MoS ₂ ·Ni ₃ S ₂ /NiS-180°C	3.60%	33.69%	46.38%	19.93%		
$N-MoS_2 \cdot Ni_3S_2/NiS-210^{\circ}C$	3.18%	17.19%	57%	25.81%		

The best HER performance (70 mV@10 mA·cm⁻²) corresponds to the highest relative rations of Mo-N bond (33.69%) when N-MoS₂·Ni₃S₂/NiS was synthesized at 180°C.

Table S2. Total N content and different N-type relative rations for N-MoS₂·Ni₃S₂/NiS that were soaked in different concentrations $H_3PO_4(aq)$ for 13 h.

Catalyst	Total N	Different N	Different N-type relative rations				
Catalyst	content	Mo-N structure	Pyridinic N	Pyrrolic N			
N-MoS ₂ ·Ni ₃ S ₂ /NiS-0 M H ₃ PO ₄	3.80%	32.42%	40.38%	27.20%			
N-MoS ₂ ·Ni ₃ S ₂ /NiS-0.5 M H ₃ PO ₄	3.49%	17.16%	56.39%	26.45%			
N-MoS ₂ ·Ni ₃ S ₂ /NiS-1.0 M H ₃ PO ₄	3.15%	13.47%	57.06%	29.47%			

Table S3. The Gibbs free energy changes of each reaction step and η_{OER} in the OER 4e⁻ process for different active catalytic sites of N-MoS₂ and Ni₃S₂/NiS.

Active catalytic site	$\Delta \mathbf{G}_{\mathbf{I}}$ (eV)	ΔG_{II} (eV)	ΔG_{III}	$\Delta \mathbf{G}_{\mathbf{IV}}$ (eV)	η _{OER} (V)
			(eV)		
Mo-N site of N-MoS ₂	0.273	-0.049	3.074	1.621	1.844
Mo-S site of N-MoS ₂	-0.055	-0.056	3.425	1.606	2.195
NiS side of Ni ₃ S ₂ /NiS	0.427	0.465	2.787	1.241	1.557
Heterogeneous interface of	0.028	1.482	1.728	1.681	0.498
Ni ₃ S ₂ /NiS					
Ni ₃ S ₂ side of Ni ₃ S ₂ /NiS	0.465	1.205	1.39	1.857	0.628

The OER 4e⁻ procss reaction step:

*
$$+H_2 O \rightarrow OH^* + (H^+ + e^-) \Delta G_{II}$$

 $OH^* \rightarrow O^* + (H^+ + e^-) \Delta G_{II}$
 $O^* + H_2 O \rightarrow OOH^* + (H^* + e^-) \Delta G_{III}$

$$00H^* \to *+ O_2 + (H^+ + e^-) \qquad \Delta G_{\mathbb{N}}$$

Catalyst	η ₁₀ of HER (mV)	$\begin{array}{cc} \eta_{10} \text{ of HER} & \eta_{10} \text{ of OER} \\ (mV) & (mV) \end{array}$		Reference
N-MoS ₂ ·Ni ₃ S ₂ /NiS	70	232	1.4	This work
MoS ₂ -AB/NF	77	243	1.51	[7]
Ni ₂ P-nanoparticle/Ni ₂ P- nanosheet	116		1.63	[8]
N-NiMoO ₄ /NiS ₂	99	283	1.60	[9]
Mo-doped Ni ₂ P	81	270	1.54	[10]
FeNi-Mo ₂ C/CF	81	228	1.53	[11]
Ni/Ni(OH) ₂	77	270	1.59	[12]
NiS _{0.5} Se _{0.5}	70	257	1.55	[13]
MoS ₂ -Ni ₃ S ₂ HNRs/NF	98	249	1.50	[14]
FeCoMoS@NG	137	238	1.58	[15]
Fe-MoS ₂ /CoMo ₂ S ₄	122	290	1.62	[16]
MoS ₂ -NiS ₂ /NGF	172	370	1.64	[17]

Table S4. The HER, OER, and water splitting performance comparison between our catalyst N- $MoS_2 \cdot Ni_3S_2/NiS$ and reported recently Mo-/Ni-based catalysts.

Reference

- [1] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.
- [2] G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758-1775.
- [3] P. E. Blöchl, Phys. Rev. B 50 (1994) 17953–17979.
- [4] D. J. Chadi, Phys. Rev. B 16 (1977) 1746-1747.
- [5] L. Deng, F. Hu, M. Ma, S.C. Huang, Y. Xiong, H.Y. Chen, L. Li, S. Peng, Angew. Chem. Int. Ed. 60 (2021) 22276-22282.
- [6] X. Ji, Y. Lin, J. Zeng, Z. Ren, Z. Lin, Y. Mu, Y. Qiu, J. Yu, Nat. Commun. 12 (2021) 1380.
- [7] L. Guo, Q. Liu, Y. Liu, Z. Chen, Y. Jiang, H. Jin, T. Zhou, J. Yang, Y. Liu, Nano Energy. (2021) 106707.
- [8] Y. Yang, K. Zhang, H. Lin, X. Li, H.C. Chan, L. Yang, Q. Gao, Adv. Funct. Mater. 29 (2019) 1805298.
- [9] Q. Wang, H. Zhao, F. Li, W. She, X. Wang, L. Xu, H. Jiao, J. Mater. Chem. A 7 (2019) 7636-7643.
- [10] F. Peng, L. Zhang, B. Jiang, H. Dou, M. Xu, N. Yang, J. Zhang, Y. Sun, Chem. Eng. J. 427 (2022) 131712.
- [11] L. Dai, Z.N. Chen, L. Li, P. Yin, Z. Liu, H. Zhang, Adv. Mater. 32 (2020) 1906915.
- [12] B. Chen, D. Kim, Z. Zhang, M. Lee, K. Yong, Chem. Eng. J. 422 (2021) 130533.
- [13] Y. Yang, K. Zhang, H. Lin, X. Li, H.C. Chan, L. Yang, Q. Gao, ACS Catal. 7 (2017) 2357-2366.
- [14] S. Ramakrishnan, J. Balamurugan, M. Vinothkannan, A.R. Kim, S. Sengodan, D.J. Yoo, Appl. Catal. B: Environ. 279 (2020) 119381.
- [15] Y. Guo, J. Tang, J. Henzie, B. Jiang, W. Xia, T. Chen, Y. Bando, Y. Kang, M.S.A. Hossain, Y. Sugahara, Y. Yamauchi, ACS Nano 14 (2020) 4141-4152.
- [16] P. Kuang, M. He, H. Zou, J. Yu, K. Fan, Appl. Catal. B: Environ. (2019) 15-25.
- [17] B. Geng, F. Yan, L. Liu, C. Zhu, B. Li, Y. Chen, Chem. Eng. J. 46 (2021) 126815.