Mediating the Alloying Depth to Tune the Silicon's Morphology and Lithium-Storage Performance

Qiang Ma^a, Yan Zhao^a, Yanyang Guo^a, Zhuqing Zhao^a, Hongwei Xie^a, Pengfei Xing^a, Dihua Wang^b, and Huayi Yin^{a,b,c,*}

a. Key Laboratory for Ecological Metallurgy of Multimetallic Mineral of Ministry of

Education, School of Metallurgy, Northeastern University, Shenyang, 110819, P. R. China.

b. School of Resource and Environmental Science, Wuhan University, Wuhan, 430072, P. R.

China.

c. Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, 110819, P. R. China.

* Corresponding author. Email: yinhuayi@whu.edu.cn (Huayi Yin)

Figure S1. SEM images of the np-Si-1 sample under different magnifications.

Figure S2. SEM images of the np-Si-9 sample under different magnifications.

Figure S3. The high-resolution spectra of O 1s of the m-Si sample.

Figure S4. Galvanostatic charge/discharge voltage profiles for the np-Si-5 electrode at

different current densities from 0.5 to 7 A g^{-1} .

Figure S5. Long-time cycling performance and Coulombic efficiency of the np-Si-9

electrode at 1 A g⁻¹ for LIBs.

Figure S6. Galvanostatic charge/discharge voltage profiles of the np-Si-5 electrode at current densities of (a) 5 A g⁻¹ and (b) 7 A g⁻¹.

Figure S7. Cycling performance of np-Si-5//LiNCM622 full cell at 5 C for 150 cycles.

Figure S8. GITT potential profiles and corresponding ${}^{D}_{Li}$ + of the m-Si electrode during the (a) lithiation and (b) delithiation processes.

Figure S9. Equivalent circuit model of the system.

Figure S10. Nyquist plots of after 100th, 300th, and 1000th cycles of the np-Si-5 electrode.

Figure S11. CV curves at different scan rates of the m-Si electrode.

Figure S12. Determination *b*-value of the main cathodic and anodic peaks of the np-Si-5 electrode by relationship between log (peak current) and log (scan rate).

	BET analysis						
Samples	$S_{\rm BET}$ (m ² /g)	$\frac{S_{ m micro}^{a}}{(m^{2}/g)}$	$\frac{S_{\text{meso}}^{b}}{(\text{m}^{2}/\text{g})}$	$V_{\rm micro}^{\rm c}$ (cm ³ /g)	$V_{\rm meso}^{\rm d}$ (cm ³ /g)	D _{aver} (nm)	$S_{ m micro}/S_{ m BET}$
m-Si	15.29	2.57	11.48	0.0012	0.06	6.8	22.39%
np-Si-3	21.90	3.04	16.93	0.0014	0.11	6.7	17.96%
np-Si-5	41.81	11.87	26.95	0.0051	0.12	5.5	44.04%
np-Si-7	30.87	6.28	22.41	0.0031	0.11	6.1	28.02%

Table S1. Pore structure information for the as-made samples

^{a)} S_{micro} and ^{b)} S_{meso} are the surface areas of the micropores and mesopores, respectively; ^{c)} V_{micro} and ^{d)} V_{meso} are the volumes of the micropores and mesopores, respectively.

		Tests done	Cycling performance	_	
Samples	Method	at/Initial discharge	Tests done at/Cycle	Ref.	
		specific capacity	number/Specific capacity		
3DNP Si	Chemical	1.8 A g ⁻¹ /~3550	1.8 A g ⁻¹ /1500/1000	1	
JDINI SI	dealloying	mA h g ⁻¹	mA h g ⁻¹		
nSi	Electrochemical	0.6 A g ⁻¹ /3342	0.6 A g ⁻¹ /400/699	2	
1151	alloying/dealloying	mA h g ⁻¹	mA h g ⁻¹		
NP-Si	Chemical	0.2 C /~3400	1.0 C/100/2100	3	
	dealloying	mA h g ⁻¹	mA h g ⁻¹		
Dorous Si	Electrochemical	0.2 A g ⁻¹ /3343	1.0 A g ⁻¹ /500/1383		
101003 51	alloying/dealloying	mA h g ⁻¹	mA h g ⁻¹		
Porous Si	Chemical	0.1 A g ⁻¹ /3450	0.1 A g ⁻¹ /258/1368	5	
1 01003 51	dealloying	mA h g ⁻¹	mA h g ⁻¹		
Cu-coated	Chemical	0.2 A g ⁻¹ /1925	0.1 A g ⁻¹ /150/1651	6	
porous Si	dealloying	mA h g ⁻¹	mA h g ⁻¹		
NP_Si	Vapor dealloving	0.2 A g ⁻¹ /3412	1.0 A g ⁻¹ /400/1180	7	
111-51	vapor deanoying	mA h g ⁻¹	mA h g ⁻¹		
MPSi	Chemical	0.1 A g ⁻¹ /2882	1.0 A g ⁻¹ /200/1846	8	
1011 51	dealloying	mA h g ⁻¹	mA h g ⁻¹		
Nano Si	Electrochemical	1.0 A g ⁻¹ /3230	3.0 A g ⁻¹ /300/1430	9	
	alloying/dealloying	mA h g ⁻¹	mA h g ⁻¹		
		$0.2 \text{ A s}^{-1}/2578$	1.0 A σ ⁻¹ /700/1514	10	
2DSi	Vapor dealloying	mA h g ⁻¹	$mA h g^{-1}$	10	
			1.0 A g ⁻¹ /800/1309		
Nanoporous	Electrochemical		mA h g ⁻¹		
Si	alloying/dealloying	l A g ⁻¹ /32/6	5.0 A g ⁻¹ /1000/1012	This	
		mA h g ⁻¹	$mA h g^{-1}$	work	
			7.0 A g ⁻¹ /1000/823		
			mA h g ⁻¹		

Table S2. Comparison of the electrochemical performance of the as-prepared samples with other Si anode materials for lithium-ion battery.

Electrodes	$R_{\rm e}\left(\Omega ight)$	$R_{ m ct}\left(\Omega ight)$	$\sigma\left(\Omega~{ m s}^{-1/2} ight)$	$D_{Li^{+}}$ (cm ² s ⁻¹)
m-Si	17.9	237.6	25.5	1.92 × 10 ⁻¹²
np-Si-5	7.3	94.9	7.3	2.33 × 10 ⁻¹¹

Table S3. The calculated impedance parameters of $(R_e, R_{ct}, \sigma, \text{ and } D_{Li^+})$ the m-Si and np-Si-5 electrodes.

References

- 1 T. Wada, T. Ichitsubo, K. Yubuta, H. Segawa, H. Yoshida and H. Kato, *Nano Lett.*, 2014, **14**, 4505-4510.
- 2 Q. Ma, Z. Zhao, Y. Zhao, H. Xie, P. Xing, D. Wang and H. Yin, *Energy Storage Mater.*, 2021, **34**, 768-777.
- 3 T. Wada, J. Yamada and H. Kato, J. Power Sources, 2016, 306, 8-16.
- 4 C. Zhang, Q. Ma, M. Cai, Z. Zhao, H. Xie, Z. Ning, D. Wang and H. Yin, *Waste Manag*, 2021, **135**, 182-189.
- 5 Z. Jiang, C. Li, S. Hao, K. Zhu and P. Zhang, *Electrochim. Acta*, 2014, 115, 393-398.
- 6 C. Li, P. Zhang and Z. Jiang, *Electrochim. Acta*, 2015, 161, 408-412.
- 7 Y. An, H. Fei, G. Zeng, L. Ci, S. Xiong, J. Feng and Y. Qian, ACS Nano, 2018, 12, 4993-5002.
- 8 W. Cao, K. Han, M. Chen, H. Ye and S. Sang, *Electrochim. Acta*, 2019, **320**, 134613-134621.
- 9 Y. Yuan, W. Xiao, Z. Wang, D. J. Fray and X. Jin, Angew. Chem., Int. Ed., 2018, 57, 15743-15748.
- 10 Y. An, Y. Tian, C. Wei, H. Jiang, B. Xi, S. Xiong, J. Feng and Y. Qian, ACS Nano, 2019, **13**, 13690-13701.