Supporting Information

Understanding the stability origins of ambient stable CsPbI₂Br inorganic halide perovskites

Congtan Zhu^a, Feiyu Lin^a, Lin Zhang^a, Si Xiao^b, Shupeng Ma^a, Sheng Liu^a, Qidong Tai^c, Liu Zhu^d, Qilin Dai^c, Xueyi Guo^a*, Ying Yang^a*

^a School of Metallurgy and Environment, Central South University, Changsha 410083, China

^b School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, PR China

^c Institute of Technological Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China

^d First Rare Materials Co., Ltd, Qingyuan 511517, China

^e Department of Chemistry, Physics and Atmospheric Sciences, Jackson State

University, Jackson, MS, 39217, USA

* Corresponding authors.

E-mail addresses: muyicaoyang@csu.edu.cn (Y. Yang), xyguo@csu.edu.cn (X. Guo).

Figure S1. Surface SEM images and particle size statistics. The top SEM morphology images and particle size statistics of $CsPbI_2Br$ films prepared in (a-d) N_2 and (e-h) air.

Figure S2. The XPS spectra of Pb 4f and I 3d of $CsPbI_2Br$ films in different atmospheres. The XPS signal of (a) Pb 4f and (b) the core-level I 3d spectra of $CsPbI_2Br$ precursor film in different atmospheres (N₂, Air and N₂/Air).

min prepared in N ₂ and An								
A two o an 1 and a	Pb (eV)		Ι	(eV)	$O(1_{\sigma}(aV))$			
Aunospheres	4 f _{7/2}	$4 f_{5/2}$	3 d _{7/2}	3 d _{5/2}	- $O Is (ev)$			
N ₂ -CsPbI ₂ Br	138.3	143.2	619.1	630.5	531.3			
Air-CsPbI ₂ Br	138.2	143.1	619.0	630.4	529.8, 531.1			
N ₂ /air-CsPbI ₂ Br	138.1	142.9	618.8	630.3	531.5			
N ₂ /air-CsPbI ₂ Br	138.1	142.9	618.8	630.3	531.5			

Table S1. The binding energy by the XPS signal of Pb 4f, I 3d and O 1s of $CsPbI_2Br$ film prepared in N_2 and Air

Figure S3. Photographs changes and XPS spectra of Pb 4f and I 3d of $CsPbI_2Br$ precursor film before the anneal in different atmospheres. a, Photographs changes. b-e, the binding energy by the XPS signal of Pb 4f and I 3d of $CsPbI_2Br$ precursor film before the anneal in different atmospheres (N₂ and air)

Atmospheres	Pb (eV)		Ι	I (eV)		(eV)
	4 f _{7/2}	$4 f_{5/2}$	3 d _{7/2}	3 d _{5/2}		
N_2 -CsPbI ₂ Br	137.8	142.7	618.6	630.1	529.8	531.5
Air-CsPbI ₂ Br	137.9	142.7	618.7	630.1	529.8	531.5

Table S2. The binding energy by the XPS signal of Pb 4f, I 3d and O 1s of $CsPbI_2Br$ precursor film before the anneal in N_2 and Air

Figure S4. XPS spectra of Pb 4f and I 3d for $CsPbI_2Br$ films prepared in different atmospheres. a,b, Pb 4f and I 3d core level for $CsPbI_2Br$ films prepared in N_2 after ageing in ambient conditions. c,d, Pb 4f and I 3d core level for $CsPbI_2Br$ films prepared in air after ageing in ambient conditions.

Figure S5. Photovoltaic performance of CsPbI₂Br PSCs prepared in different atmospheres. a,b, J-V curves and (c) histograms of PCE values for 16 devices of CsPbI₂Br PSCs prepared in different atmospheres (N₂ and air) and only based on the dense TiO₂.

Figure S6. Steady-state output current density under maximum power point of CsPbI₂Br PSCs prepared in different atmospheres (N₂ and air). (a) Based on the dense TiO₂, (b) Based on the dense TiO₂ and mesoporous-TiO₂ (m-TiO₂)

Preparation	Scan type	V _{oc}	J_{sc}	FF	PCE	Hysteresis
atmosphere	Scan type	(V)	$(mA \cdot cm^{-2})$	(%)	(%)	of PCE (%)
N ₂ (without m-	Forward	1.10	16.22	71	12.67	27
TiO ₂)	Reverse	1.10	16.23	73	13.03	2.1
Air (without m-	Forward	1.07	14.13	54	8.16	10 2
TiO ₂)	Reverse	1.10	14.08	65	10.07	10.2

Table S3. The photovoltaic parameters of $CsPbI_2Br$ PSCs prepared in different atmospheres (N₂ and Air) and only based on the dense TiO₂

Figure S7. Get an ideal factor using the *J-V* under variable light intensity. a,b, *J-V* curves with variable light intensity, c, J_{sc} and d, V_{oc} dependency on light intensity of CsPbI₂Br PSCs prepared in different atmospheres (N₂ and air) and only based on the dense TiO₂.

Table S4. The EIS parameters of of $CsPbI_2Br$ PSCs prepared in different atmospheres

Preparation atmosphere	$R_{s}\left(\Omega ight)$	$R_{trans}\left(\Omega ight)$	C_{trans} (F)
N_2	60.01	54.62	1.3×10-6
Air	59.99	71.71	1.9×10 ⁻⁷

Figure S8. The top and cross-sectional SEM morphology images and particle size statistics of CsPbI₂Br films prepared in ambient humidity (RH=5%/15%/30%/45%/55%)

Figure S9. a,b, XPS spectra of Pb 4f and I 3d for annealing CsPbI₂Br films prepared in N₂ with water as additives. **c-e**, XPS spectra of Pb 4f, I 3d and O 1s for unannealing CsPbI₂Br films prepared in N₂ with water as additives (The volume ratio of water to perovskite precursor solution is 1:400, 1:200,1:100, 1:40 and 1:20).

Figure S10. XPS spectra of (a) Pb 4f and (b) I 3d for $CsPbI_2Br$ films prepared at different humidity (5%~55%).

RH /%	$R_{trans}\left(\Omega ight)$	$V_{oc}\left(\mathrm{V} ight)$	$J_{sc} (\mathrm{mA}\cdot\mathrm{cm}^{-2})$	FF (%)	PCE (%)
5	57.99	0.95	12.72	58	7.01
15	62.48	0.97	10.51	60	6.12
30	71.71	0.94	9.20	59	5.10
45	143.3	1.02	8.72	55	4.89
55	516.6	0.92	8.07	60	4.45

Table S5. EIS and photoelectric parameters of $CsPbI_2Br$ inorganic PSCs with mesoporous TiO_2 under different ambient humidity.

Figure S11. a-e, J-V curves and f, histograms of PCE values of CsPbI₂Br PSCs prepared under different ambient humidity without mesoporous TiO₂.

				2		
RH	Scan type	V (V)	$I_{(m\Lambda;cm^{-2})}$	FF	PCE	Hysteresis of
/%	Scun type	V oc (V)	J_{SC} (IIIA CIII)	(%)	(%)	PCE (%)
5	Forward	1.10	16.36	66	11.93	2.6
5	Reverse	1.10	16.34	69	12.40	5.0
15	Forward	1.12	15.08	61	10.30	10.2
15	Reverse	1.13	15.06	67	11.40	10.5
20	Forward	1.11	15.40	50	8.55	10 2
30	Reverse	1.12	15.27	61	10.43	18.2
45	Forward	1.05	14.10	51	7.55	10.0
	Reverse	1.08	14.16	61	9.33	18.8
55	Forward	1.06	13.31	34	4.80	21.9
	Reverse	1.08	12.93	44	6.14	21.8

Table S6. The photoelectric parameters of $CsPbI_2Br$ inorganic PSCs prepared under different ambient humidity and only based on the dense TiO_2

Figure S12. TRPL of CsPbI₂Br PSCs prepared in ambient with different humidity.

RH (%)	τ_l (ns)	$ au_2$ (ns)	$A_1(ns)$	A_2 (ns)	В	$ au_{average}$ (ns)
15	3.31	6.29	225.40	415.90	10.74	5.23
45	0.66	2.51	980.00	157.10	10.00	0.92

Table S7. The TRPL parameters of CsPbI₂Br films prepared under different ambient humidity