
Supporting Information

Structural study on the development of high-voltage Na₄Co₃(PO₄)₂P₂O₇ cathode materials for sodium-ion batteries by in situ and time-resolved X-ray diffraction

Dong Hyun Kim^{a,b}, Ji-Young Kim^c, Min Kyung Cho^c, Hyungseok Kim^{a,d}, Sang-Ok Kim^{a,d}, Kwang-Bum Kim^{b,*}, Kyung Yoon Chung^{a,d,*}

^aEnergy Storage Research Center, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbukgu, Seoul 02792, Republic of Korea
^bDepartment of Material Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemoon-gu, Seoul 03722, Republic of Korea
^cAdvanced Analysis and Data Center, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk -gu, Seoul 02792, Republic of Korea
^dDivision of Energy & Environment Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
Corresponding Authors:
*Email address: kbkim@yonsei.ac.kr
*Email address: kychung@kist.re.kr

Figure S1. Schematic and digital images of the TR-XRD test device for studying structural changes during heating.¹

1. Kim, D.H., et al., RT-XAMF and TR-XRD studies of solid-state synthesis and thermal stability of NaNiO2 as cathode material for sodium-ion batteries. Ceramics International, 2022.

(a) Calcination

(b) Sintering

Figure S2. Raw material loss caused by reaction with the container during the heat treatment process. (a) Calcination at 500 °C, and (b) sintering at 700~770 °C.

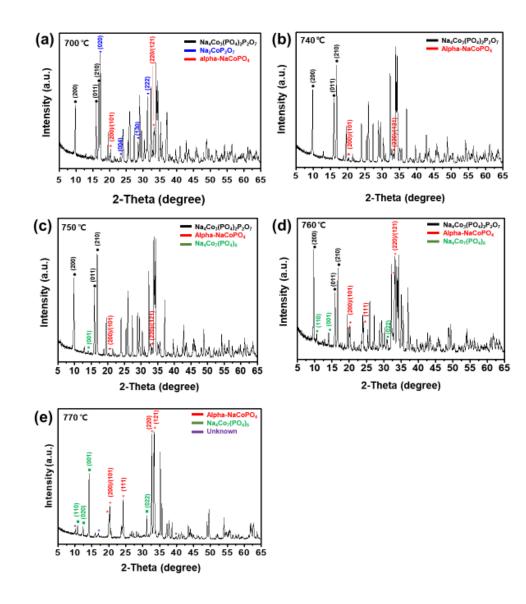
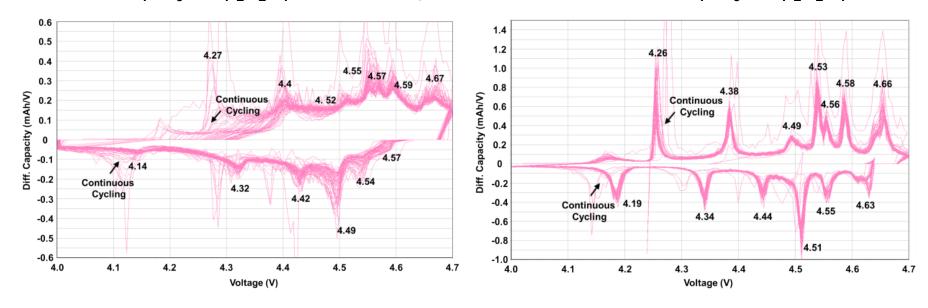



Figure S3. XRD patterns of sodium cobalt phosphates synthesized at (a) 700 °C, (b) 740 °C, (c) 750 °C, (d) 760 °C, and (e) 770 °C.

(a) Bare $Na_4Co_3(PO_4)_2P_2O_7$ (in this study)

(b) Carbon-coated Na₄Co₃(PO₄)₂P₂O₇

Figure S4. Differential capacity (dQ/dV) vs. voltage of (a) the Na₄Co₃(PO₄)₂P₂O₇ synthesized at 740 °C. For comparison of structural changes, dQ/dV data of (b) carbon-coated Na₄Co₃(PO₄)₂P₂O₇ were included. Note that the Na₄Co₃(PO₄)₂P₂O₇ used in this study is not carbon coated.

	Na	Со	Р	Na/Co	P/Co
Theoretical molar ratio	4	3	4	1.33	1.33
Experimental value (mmol/L)	17.46	13.53	16.34	_ 1.29	1.22
Calculated molar ratio	3.87	3.00	3.65		

Table S1. ICP data of Na₄Co₃(PO₄)₂P₂O₇ synthesized at 740 °C.

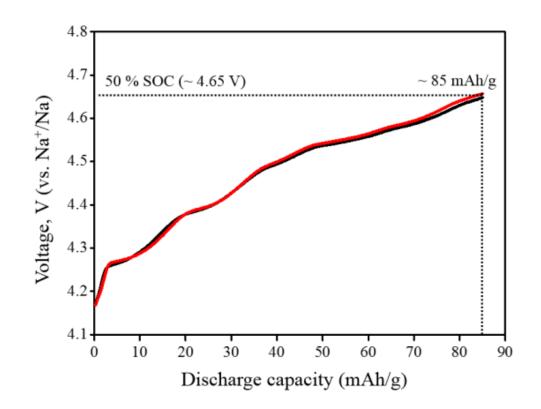


Figure S4. Charge curves of $Na_4Co_3(PO_4)_2P_2O_7$ cathodes for the preparation of charged $Na_{4-x}Co_3(PO_4)_2P_2O_7$ (x = 2) cathodes for TR-XRD.