Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Tailoring Trimetallic CoNiFe Oxide Nanostructured Catalysts for the Efficient Electrochemical Conversion of Methane to Methanol

Libin Zeng, Antony R. Thiruppathi, Joshua van der Zalm, Tony Shi, Aicheng Chen*

Electrochemical Technology Center, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada

*Corresponding author. E-mail: <u>aicheng@uoguelph.ca</u>

Experimental Section

1. Chemicals

Nickel (II) nitrate hexahydrate (99%, Ni(NO₃)₂·6H₂O), cobalt (II) nitrate hexahydrate (98%, Co(NO₃)₂·6H₂O), sodium citrate (99%, Na₃C₆H₅O₇), potassium hexacyanoferrate (III) (99%⁺, K₄Fe(CN)₆), sodium sulfate (99%, Na₂SO₄), sodium carbonate (99%⁺, Na₂CO₃), sodium hydroxide (97%⁺, NaOH), sodium salicylate (99%, C₇H₅O₃Na), sodium hypochlorite (5%, NaClO), sodium nitroferricyanide (III) (99%⁺, C₅FeN₆Na₂O), hydrazine (98%⁺, N₂H₄), and ammonium chloride (99%⁺, NH₄Cl) were purchased from Sigma-Aldrich Chemical Reagent Ltd.. Nafion (1 wt.%) solution, hydrogen peroxide (30%, H₂O₂), sulfuric acid (99%⁺), methanol and ethanol were purchased from Aladdin Ltd. All reagents were of analytical grade and used without further purification. Additionally, an anion exchange membrane (AEM) was purchased from the DuPont Company (N2050TX, thickness: 0.3 mm). The deionized (DI) water (18.2 MΩ cm) used in all experiments was obtained from a Nanopure DiamondTM ultrapure water system.

2. Electrochemical activity evaluation

A two-chamber cell separated by a pre-treated cation exchange membrane (CEM) was used to investigate the products of each chamber. When a single reduction or oxidation reaction was investigated in one chamber, the other chamber was examined without gas bubbling. The iR drop was uncompensated during the electrochemical measurements. For the NRR experiments, a graphite rod was used as the counter electrode. In the cathode chamber with N₂ gas, the generation of ammonia (NH₃) was measured and quantitatively analyzed by the modified indophenol blue method.^{1, 2} As follows, 2 mL of the cathode effluent was taken, then 2 mL of solution A (10.0 g salicylic acid and 10.0 g sodium citrate dissolved in 0.32 M NaOH solution), 1 mL 0.05 M NaClO and 0.2 mL of 0.01 g mL⁻¹ C₅FeN₆Na₂O was dropped into the testing solution in turn. After 2hours, the concentration was measured at 655 nm by UV-vis spectrophotometer (Varian Cary 50). A calibration curve was generated using 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 μ g mL⁻¹ of standard NH₄Cl vs. the corresponding UV-vis absorbance, giving a clear linear relationship (y = 0.113 x + 0.013, $R^2 = 0.999$) in triplicate parallel experiments. The control experiments under the N₂-saturated, Arsaturated and open-circuit conditions for the NRR have been performed to avoid any exogenous sources of nitrogen compounds.³ The generated $C_{[NH_3]}$ in the NRR was calculated as follow:

$$C_{[NH_3]} = C_{[NH_3]}^{N_2} C_{[NH_3]}^{Ar} C_{[NH_3]}^{Open}$$
(S1)

where $C_{[NH_3]}^{N_2}$, $C_{[NH_3]}^{Ar}$, $C_{[NH_3]}^{Open}$ are obtained under the N₂-saturated, Ar-saturated and open-circuit conditions for the NRR experiments, respectively.

The NH₃ yield was calculated by the following equation:

NH₃ yield =
$$C_{[NH_3]} * V/(m_{cat.} * t)$$
 (S2)

where $C_{[NH_3]}$ is the obtained NH₃ concentration; V is the reaction electrolyte solution (20 mL); m_{cat.} is the mass of the catalyst, and t is the time of electrolysis reaction (t = 2 h).

Faradaic efficiency was obtained as follows:

$$FE = 3*F*^{C_{[NH_3]}} * V/(18 * Q)$$
(S3)

where F is the Faraday constant (96485.3 C mol⁻¹); Q is the quantity of electric charge by the applied potential. Besides, the potential by-product (N_2H_4) was also investigated by our formerly reported method.⁴ There was no change for the initial and 2 h for the NRR in the UV-vis spectrum at 455 nm, suggesting that there is no any N_2H_4 generation in this system.

In the anode chamber, the CH_4 oxidation reaction was investigated. The pure CH_4 gas was continuously purged into 0.5 M Na₂CO₃ electrolyte at a flow rate of 5 mL min⁻¹. All the gas products were detected by gas chromatography. Liquid products of the CH_4 electrochemical oxidation were analyzed by ¹H nuclear magnetic resonance spectroscopy (¹H NMR) measured on a 600 MHz NMR spectrometer (Bruker). Before the measurement, a 0.35 mL sample from the anode chamber was mixed with 0.05 wt% tetramethylsilane (TMS) in 0.35 mL D₂O. The yield of products, FEs, the corresponding selectivity, and the CH_4 conversion rate were calculated as follows:

Yields (mmol
$$g_{cat}$$
.⁻¹ h⁻¹) = mmol of products / g of catalysts / h of the reaction time (S4)

FE (CH₃OH, %) =
$$0.1929 * n$$
 (CH₃OH, µmol) * 100% / Q (S5)

FE (CH₃CHOHCH₃, %) =
$$0.1929 * n$$
 (CH₃CHOHCH₃, µmol) * $100\% / Q$ (S6)

The integrated reaction system was comprised of two working electrodes and one reference electrode. Where the optimized $Co_{0.8}Ni_{0.2}Fe_2O_4$ -N/C and $Co_{0.6}Ni_{0.4}Fe_2O_4$ -N/C catalysts were employed as the working electrodes in the cathode and anode chambers, respectively. N₂ gas and CH₄ gas were simultaneously purged into the corresponding electrolytes. Considering the measurement of the current density, the reference electrode would be employed in the same chamber with the targeted reaction. After two-hour electrolysis, the corresponding anode- and cathode-electrolyte would be collected and further analyzed. Blank experiments, including NiCoFe catalysts under the open potential condition, were carried out to eliminate possible interferences.

3. Characterization of nanomaterials

The morphologies of CoNiFe-N/C and CoNiFe catalysts were characterized using a field-emission scanning electron microscope (FE-SEM) (FEI Quanta 250) and the high-resolution transmission electron microscopy (HRTEM) (FEI Tecnai F30 electron microscope, using a 200 kV accelerating voltage). An X-ray diffractometer with Cu $K\alpha$ radiation (D/max-2400, Japan, source light at the wavelength (λ) of 0.1541 nm) was employed to investigate the crystallinity structure of the asprepared catalysts. X-ray Photoelectron Spectroscopy (XPS) (Scienta Omicron) with a monochromatic Al K_{α} x-ray source was used to analyze their chemical composition and oxidation states. Raman spectra were recorded at 532 nm by utilizing a Raman spectrophotometer (Renishaw

Canada Ltd.). Thermogravimetric (TG) analysis was performed with a QMA200M thermal analyzer (METTLER TOLEDO) at a heating rate of 2 °C min⁻¹ under air conditions. The radicals were detected via electron paramagnetic resonance (EPR) spectroscopy, which was conducted with a Bruker ECS106 X-band spectrometer (Bruker A200, Germany). The gas products were transferred using a gas-tight syringe (Hamilton) and examined using a gas chromatograph (GC, Shimadzu, GC-2014, Column:silica gel) that was equipped with a thermal conductive detector (TCD).

4. Theoretical calculations

To explore the electronic structures and electron transfer in the NRR and CH₄ oxidation systems, the Co_yNi_{1-y}Fe₂O₄ and Co_yNi_{1-y}Fe₂O₄-N/C with one layer of carbon structure models were built based on the NiFe₂O₄ template. The optimization of the constructed structures was enabled by the CASTEP module with the Perdew-Burke-Ernzerhof (PBE) functional of the generalized gradient approximation (GGA). Additionally, the position of the Co doping was thought to be the replacement of Ni atoms with Co atoms. A $2 \times 2 \times 1$ 3D triclinic NiFe₂O₄ cell (a = 8.480 Å, b = 8.480 Å, c = 8.480 Å, $\alpha = \beta = \gamma = 90^{\circ}$) was used for the doping and the addition of carbon layer cells. A k-point set of $2 \times 1 \times 1$ and an energy cut-off of 320 eV were performed to optimize the geometry of the constructed models with medium k-point set. The convergence criterion was 1.0 $\times 10^{-5}$ eV for energy and 0.05 eV Å⁻¹ for force. The adsorption energy (E) was calculated as follow:

(S9)

where $E_{Co_yNi_1-y}$ and $E_{Co_yNi_1-y}$, $E_{Co_yNi_1-y}$, $E_{Carbon layer}$, $E_{CH_{4}}$ and E_{H} are the electronic energies of the Co_yNi_{1-y}Fe₂O₄-N/C, Co_yNi_{1-y}Fe₂O₄, carbon, CH₄ and H unit cell, respectively. For the first principle calculation of the activation of CH₄ to CH₃, an energy cut-off of 350 eV was performed. A force tolerance, SCF tolerance, and electronic field were 0.05 eV Å⁻¹, 1.0×10^{-5} eV per atom and -5 eV vs. Vacuum, respectively. The experimental optimal potential on the electrode reaction was performed by adding the value of -n eU (n: the number of electrons in the DMC; U: the electric potential).

Co-doping rate	Air condition treatment (350°C) ^a	Yield ^a	Ar condition treatment (350°C) ^b	Yield ^b
0	NiFe ₂ O ₄	55.4%	NiFe ₂ O ₄ /N@C	56.2%
20%	Co _{0.2} Ni _{0.8} Fe ₂ O ₄	60.9%	Co _{0.2} Ni _{0.8} Fe ₂ O ₄ /N@C	72.1%
40%	Co _{0.4} Ni _{0.6} Fe ₂ O ₄	67.1%	Co _{0.4} Ni _{0.6} Fe ₂ O ₄ /N@C	77.1%
60%	Co _{0.6} Ni _{0.4} Fe ₂ O ₄	65.0%	Co _{0.6} Ni _{0.4} Fe ₂ O ₄ /N@C	67.3%
80%	Co _{0.8} Ni _{0.2} Fe ₂ O ₄	61.1%	Co _{0.8} Ni _{0.2} Fe ₂ O ₄ /N@C	63.6%
100%	CoFe ₂ O ₄	53.9%	CoFe ₂ O ₄ /N@C	62.1%

Table S1. Yields of Co_yNi_{1-y} -Fe PBA catalysts after the high-temperature treatment under the Air-

or Ar-condition.

Sample	C/At%	N/At%	O/At%	Fe/At%	Ni/At%	Co/At%
CoNiFe-N/C-0	51.28	37.03	10.08	0.49	1.31	0
CoNiFe-N/C-0.2	50.89	38.41	8.89	0.62	0.98	0.21
CoNiFe-N/C-0.4	50.77	38.57	8.33	0.68	1.06	0.59
CoNiFe-N/C-0.6	50.54	38.31	8.36	0.87	0.73	1.19
CoNiFe-N/C-0.8	50.31	38.07	8.60	1.06	0.34	1.62
CoNiFe-N/C-1	50.17	37.94	8.73	1.28	0	1.88

Table S2. EDX analysis of different $Co_yNi_{1-y}Fe_2O_4$ -N/C catalysts

N ₂ -saturated	$R_{ohm}\left(\Omega ight)$	C _{CE} (µF)	$R_{ct(CE)}(\Omega)$	С _{АЕ} (µF)	$R_{ct(AE)}(k\Omega)$	W(S*Sec ⁵)
0	90.4 ± 0.06	2.38 ± 0.05	4187 ± 0.06	8.04 ± 0.01	0.18 ± 0.03	0.027 ± 0
0.2	92.6 ± 0.04	7.17 ± 0.04	1850.9 ± 0.04	2.87 ± 0.06	1.64 ± 0.05	0.026 ± 0
0.4	89.8 ± 0.01	4.19 ± 0.04	2071.7 ± 0.07	2.64 ± 0.02	1.21 ± 0.01	0.0003 ± 0
0.6	88.4 ± 0.07	1.53 ± 0.02	1276 ± 0.08	8.98 ± 0.01	0.074 ± 0	0.0004 ± 0
0.8	86.3 ± 0.01	2.65 ± 0.03	541.8 ± 0.02	17.5 ± 0.03	0.013 ± 0	0.0004 ± 0
1	91.5 ± 0.07	16.1 ± 0.09	6861 ± 5	1.76 ± 0.01	1.18 ± 0.002	0.0003 ± 0

Table S3. Parameter analysis of the equivalent circuit model corresponding to the Nyquist plotsof the as-prepared $Co_yNi_{1-y}Fe_2O_4$ -C/N under N2-saturated conditions.

 R_{ohm} = Resistance of solution, $R_{ct(CE)}$ = Charge transfer resistance, $R_{ct(AE)}$ = Charge transfer and recombination resistance, C = Capacitance of double layer, W = Warburg impedance (mass transfer).

CH ₄ -saturated	R_{ohm} (Ω)	С _{СЕ} (µF)	$R_{ct(CE)}(\Omega)$	C _{AE} (mF)	$R_{ct(AE)}(k\Omega)$	W(S*Sec ⁵)
0	37.8 ± 0.02	1.72 ± 0.02	1352 ± 0.04	0.02 ± 0	2.04 ± 0.04	0.0003 ± 0
0.2	34.7 ± 0.03	7.08 ± 0.05	404.1 ± 0.05	3.34 ± 0.03	1.96 ± 0.05	0.0003 ± 0
0.4	32.1 ± 0.02	2.11 ± 0.01	40.3 ± 0.03	0.002 ± 0	1.17 ± 0	0.0007 ± 0
0.6	24.0 ± 0.01	1.23 ± 0.02	38.8 ± 0.03	2.34 ± 0.03	0.52 ± 0.01	0.0024 ± 0
0.8	26.5 ± 0.02	1.19 ± 0.03	81.8 ± 0.06	0.004 ± 0	2.39 ± 0.03	0.001 ± 0
1	25.2 ± 0.01	1.33 ± 0.02	264.7 ± 0.04	0.008 ± 0	2.55 ± 0.01	0.0007 ± 0

Table S4. Parameter analysis of the equivalent circuit model corresponding to the Nyquist plots of the as-prepared $Co_yNi_{1-y}Fe_2O_4$ -C/N under the CH₄-saturated conditions.

 R_{ohm} = Resistance of solution, $R_{ct(CE)}$ = Charge transfer resistance, $R_{ct(AE)}$ = Charge transfer and recombination resistance, C = Capacitance of double layer, W = Warburg impedance (mass transfer).

Catalusta	Conditions	Faradaic Efficiency (%)/	Ammonia Yield	Dof
Catalysts	Conditions	Bias (V vs. RHE)	(µg h ⁻¹ mg ⁻¹ _{cat.})/Bias (V vs. RHE)	Kel.
CoMoO ₄ nanoparticles	0.1 M Na ₂ SO ₄	10.18/-0.3	23.14/-0.3	5
CoO QDs/rGO	$0.1 \text{ M} \text{ Na}_2 \text{SO}_4$	8.30/-0.6	21.50/-0.7	6
CoFe ₂ O ₄ /rGO	0.1 M Na ₂ SO ₄	6.20/-0.4	5.14/-0.4	7
Co-N/C	0.1 M KOH	10.10/-0.1	5.10/-0.4	8
C_3O_4/NC nanocages	0.05 M H ₂ SO ₄	8.50/-0.2	42.58/-0.2	9
Co SAs-N/C	0.05 M H ₂ SO ₄	10.50/-0.2	2.09/-0.2	10
Ni/NiO/C nanotubes	0.1 M KOH	10.9/-0.7	43.15/-0.7	11
N-NiO/CC nanosheets	0.1 M LiClO ₄	7.30/-0.5	22.70/-0.4	12
NiO QDs/graphene	$0.1 \text{ M} \text{ Na}_2 \text{SO}_4$	7.80/-0.7	18.60/-0.7	13
NiCo ₂ O ₄ -N/C	$0.1 \text{ M} \text{ Na}_2 \text{SO}_4$	5.30/-0.25	17.80/-0.25	14
Fe_2O_3 nanorods	$0.1 \text{ M} \text{ Na}_2 \text{SO}_4$	0.94/-0.8	15.90/-0.8	15
Fe ₂ O ₃ /rGO	0.1 M LiClO ₄	5.89/-0.5	22.13/-0.5	16
Fe/Fe ₃ O ₂ /C	0.2 M NaHCO ₃	6.25/-0.3	15.91*/-0.3	17
Fe SAs/N-O/C	0.1 M HCl	11.80/-0.4	31.90/-0.4	18
FeMo-N/C	0.1 M H ₂ SO ₄	14.2/-0.1	38.76/-0.1	19
Fe-N/C-carbon nanotube	0.1 M KOH	9.28/-0.2	34.83/-0.2	20
FeNi-N/C	0.1 M Na ₂ SO ₄	1.75/-0.2	23.34/-0.3	4
Co _{0.8} Ni _{0.2} Fe ₂ O ₄ -N/C	$0.1 \text{ M Na}_2^{-}\text{SO}_4$	15.35/-0.7	52.56/-0.8	This work

Table S5. Comparison of electrochemical ammonia synthesis by N_2 fixation at the Co/Ni/Fe-based catalysts.

*Its unit is $\mu g h^{-1} cm^{-2}_{cat}$;

Table S6. Comparison of CH_4 oxidation performance at 0.8 V vs Ag/AgCl for 2 h with or without N_2 gas flow in the cathode chamber.

NRR	Methanol yield ¹	Its FE	2-propanol yield ¹	Its FE	Current density ²
Yes	1925.4	9.03%	398.1	5.59%	4.1
No	722.6	3.76%	306.4	4.79%	2.9

¹Unit: mmol g_{cat}⁻¹ h⁻¹, ²Unit: mA cm⁻².

Table S7. Comparison of the NRR performance at -0.8 V vs Ag/AgCl for 2 h with or without CH_4 gas in the anode.

DMC	Ammonia yield		Hydrazine yield	I4a FF	Current density
DMC	$(\mu g h^{-1} m g^{-1}_{cat.})$	ILS F.L.	(µg h ⁻¹ mg ⁻¹ _{cat.})	Its FE	(mA cm ⁻²)
Yes	10.69	5.18%	0	0	1.23
No	6.73	4.67%	0	0	0.84

Catalyst	Potential	Main Product	Product Yield (^a mmol g ⁻¹ h ^{-1/b} mg mL ⁻¹ h ⁻¹)	Reference
TiO ₂ -ALD	0.6 V vs. RHE	СО		21
NiO/Ni	1.4 V vs. RHE	CH ₃ CH ₂ OH	^a 0.025	22
NiO/Ni hollow fiber	1.46 V vs. RHE	CH ₃ CH ₂ OH		23
NiO/ZrO ₂	2.0 V vs. SCE	СО		24
ZrO ₂ /NiCo ₂ O ₄	2.0 V vs. Pt	CH ₃ CH ₂ CH ₂ OH, CH ₃ CH(OH)CH ₃	^a 2.595	25
ZrO ₂ /Co ₃ O ₄	2.0 V vs. Pt	CH ₃ CH ₂ CH ₂ OH, CH ₃ CH(OH)CH ₃	^b 0.22	26
ZrO ₂ NTs/Co ₃ O ₄	1.6 V vs. RHE	CH ₃ CH ₂ CH ₂ OH, CH ₃ CH(OH)CH ₃ CH ₃ CH ₂ OH	^a 9.36	27
ZrO ₂ /CuO _x	2.2 V vs. RHE	CH ₃ CH ₂ CH ₂ OH, CH ₃ CH(OH)CH ₃	^b 0.23	28
CuO/CeO_2	1.5 V vs. Pt	CH ₃ OH	^a 0.753	29
Co _{0.6} Ni _{0.4} Fe ₂ O ₄ -N/C	0.8 V vs. Ag/AgCl	CH ₃ OH CH ₃ CH(OH)CH ₃	^a 1029/ ^b 0.08	This work
Co _{0.6} Ni _{0.4} Fe ₂ O ₄ -N/C*	1.1 V vs. Ag/AgCl	CH ₃ OH CH ₃ CH(OH)CH ₃	^a 7273.8/ ^b 0.74	This work
Co _{0.6} Ni _{0.4} Fe ₂ O ₄ -N/C*	0.8 V vs. Ag/AgCl	CH ₃ OH CH ₃ CH(OH)CH ₃	a2323.5/b0.24	This work

Table S8. Summaries of electrocatalytic CH_4 oxidation systems at room temperature.

* The integrated electrochemical system.

Figure S1. (a) SEM image and (b) corresponding size distributions of NiFe PBA template catalyst; (c) Thermogravimetry curve of the NiFe PBA template under air conditions at heating rate of 2 °C min⁻¹; (d) Image of the different ratios of CoNiFe-N/C catalyst inks.

Figure S2. SEM images of Co_yNi_{1-y}-Fe₂O₄-N/C catalysts, (a) y=0, (b) y=0.2, (c) y=0.4, (d) y=0.6, (e) y=0.8, and (f) y=1, respectively.

Figure S3. SEM images of Co_yNi_{1-y} -Fe₂O₄ catalysts, (a) y=0, (b) y=0.2, (c) y=0.4, (d) y=0.6, (e) y=0.8, and (f) y=1, respectively.

Figure S4. (a) Average size of Co_yNi_{1-y} -Fe₂ PBA derived catalysts under Air- and Ar-conditions, respectively; (b) Scheme of the structure proposed for the PBA particles in CoFeNi. The scale between the core and the shell is arbitrary.

Figure S5. (a)-(e) LSV curves of CoNiFe-N/C-x (x= 0, 0.2, 0.4, 0.6, 1) catalysts in Ar- and N₂saturated 0.1 M Na₂SO₄ solution with a scan rate of 20 mV s⁻¹, respectively. (f) the corresponding current density difference of the CoNiFe-N/C catalysts measured at the N₂-saturated and the Arsaturated solution.

Figure S6. (a)-(e) LSV curves of CoNiFe-x (x=0, 0.2, 0.4, 0.6, 1) catalysts in Ar- and N₂-saturated 0.1 M Na₂SO₄ solution with a scan rate of 20 mV s⁻¹, respectively. (f) the corresponding current density difference of the CoNiFe-x catalysts measured at the N₂-saturated and the Ar-saturated solution.

Figure S7. (a)-(e) LSV curves of CoNiFe-N/C-x (x=0, 0.2, 0.4, 0.8, 1) catalysts in Ar- and CH₄saturated 0.5 M Na₂CO₃ solution with a scan rate of 20 mV s⁻¹, respectively. (f) current density difference of the CoNiFe-N/C-x catalysts measured at the CH₄-saturated and the Ar-saturated solution.

Figure S8. (a)-(e) LSV curves of CoNiFe-x (x = 0, 0.2, 0.4, 0.8, 1) catalysts in Ar- and CH₄saturated 0.5 M Na₂CO₃ solution with a scan rate of 20 mV s⁻¹, respectively. (f) the current density difference of the CoNiFe-x catalysts measured at the CH₄-saturated and the Ar-saturated solution.

Figure S9. Simulated XRD patterns of built crystalline $Co_yNi_{1-y}Fe_2O_4$ (a) and $Co_yNi_{1-y}Fe_2O_4$ -N/C (b) models.

Figure S10. High-resolution XPS spectra of CoNiFe-N/C-x catalysts for N 1s.

Figure S11. High-resolution XPS spectra of CoNiFe-N/C-x catalysts for O 1s.

Figure S12. EIS spectra of: (a) $Co_{0.8}Ni_{0.2}Fe_2O_4$ -N/C catalyst under the Ar- and N₂-saturated conditions; (b) various composition ratios of the CoNiFe-N/C catalysts under the N₂-saturation condition [Inset: equivalent circuit model (Point: original data; Line: fitting data)]; (c) the $Co_{0.6}Ni_{0.4}Fe_2O_4$ -N/C catalyst under the Ar- and CH₄-saturated conditions; (d) various composition ratios of the CoNiFe-N/C catalysts under CH₄-saturation conditions [Inset: equivalent circuit model].

Figure S13. ECSA comparisons for (a) CoNiFe-N/C-0.4, (b) 0.6, (c) 0.8 composites based on their double-layer capacitances using CV at different scan rates from 10 to 100 mV s⁻¹ in N₂-saturated 0.1 M Na₂SO₄. (d) the corresponding plots of the current density at -0.75 V vs. the scan rate.

Figure S14. ECSA comparisons for (a) CoNiFe-N/C-0.4, (b) 0.6, (c) 0.8 composites based on their double-layer capacitances using CV at different scan rates from 10 to 100 mV s⁻¹ in CH₄-saturated 0.5 M Na₂CO₃. (d) the corresponding plots of the current density at 1.0 V vs. the scan rate.

Figure S15. Chronoamperometric curves for the NRR recorded at different potentials over the CoNiFe-NC-0.8 catalyst.

Figure S16. (a) Calibration curve for the detection of N_2H_4 concentration; (b) UV-vis spectra of the cathode chamber solution after two-hour electrolysis under an Ar- and N_2 -saturated condition.

Figure S17. Product yield percentage of the DMC over the $Co_{0.6}Ni_{0.4}Fe_2O_4$ -N/C catalyst at different applied potentials.

Figure S18. EPR spectra of the electrochemical CH_4 oxidation over the $Co_{0.6}Ni_{0.4}Fe_2O_4$ -N/C catalyst (DMPO- $\cdot O_2^-$ formed in methanol dispersions, 0.3 M; Blue: open voltage condition; Red: with potential).

Figure S19. Adsorption energy comparison of the CH_4 absorption over the surface of CoNiFe-x and CoNiFe-N/C-x catalysts.

Figure S20. PDOS of carbon layer for (a) $Co_{0.6}Ni_{0.4}Fe_2O_4$ -NC and (b) $Co_{0.6}Ni_{0.4}Fe_2O_4$ -NC surface, and the corresponding CH₄ adsorption (c) and N₂ adsorption (d).

References

- Z. Wang, Y. Li, H. Yu, Y. Xu, H. Xue, X. Li, H. Wang and L. Wang, *ChemSusChem*, 2018, 11, 3480-3485.
- L. Xia, X. Wu, Y. Wang, Z. Niu, Q. Liu, T. Li, X. Shi, A. M. Asiri and X. Sun, *Small Methods*, 2018, 14, 1800251.
- S. Z. Andersen, V. Colic, S. Yang, J. A. Schwalbe, A. C. Nielander, J. M. McEnaney, K. Enemark-Rasmussen, J. G. Baker, A. R. Singh, B. A. Rohr, M. J. Statt, S. J. Blair, S. Mezzavilla, J. Kibsgaard, P. C. K. Vesborg, M. Cargnello, S. F. Bent, T. F. Jaramillo, I. E. L. Stephens, J. K. Norskov and I. Chorkendorff, *Nature*, 2019, **570**, 504-508.
- L. Zeng, X. Li, S. Chen, J. Wen, W. Huang and A. Chen, *J. Mater. Chem. A*, 2020, 8, 7339-7349.
- X. Han, C. S. Gerke, S. Banerjee, M. Zubair, J. Jiang, N. M. Bedford, E. M. Miller and V. S. Thoi, ACS Energy Lett., 2020, 5, 3237-3243.
- 6. K. Chu, Y.-p. Liu, Y.-b. Li, H. Zhang and Y. Tian, J. Mater. Chem. A, 2019, 7, 4389-4394.
- M. I. Ahmed, S. Chen, W. Ren, X. Chen and C. Zhao, *Chem. Commun.*, 2019, 55, 12184-12187.
- 8. J. Hou, M. Yang and J. Zhang, Nanoscale, 2020, 12, 6900-6920.
- S. Luo, X. Li, B. Zhang, Z. Luo and M. Luo, ACS Appl. Mater. Interfaces, 2019, 11, 26891-26897.
- 10. B. Yang, W. Ding, H. Zhang and S. Zhang, Energy Environ. Sci., 2021, 14, 672-687.
- K. Chu, Y.-p. Liu, Y.-b. Li, Y.-l. Guo and Y. Tian, ACS Appl. Mater. Interfaces, 2020, 12, 7081-7090.

- K. Lu, F. Xia, B. Li, Y. Liu, I. B. Abdul Razak, S. Gao, J. Kaelin, D. E. Brown and Y. Cheng, ACS Nano, 2021.
- 13. K. Zhao, X. Quan, Y. Su, X. Qin, S. Chen and H. Yu, Environ. Sci. Technol., 2021.
- F. Lai, J. Feng, X. Ye, W. Zong, G. He, C. Yang, W. Wang, Y.-E. Miao, B. Pan, W. Yan, T. Liu and I. P. Parkin, *J. Mater. Chem. A*, 2020, **8**, 1652-1659.
- 15. C. Ma, X. Yan, H. He, B. Liu and S. Yan, Sustain. Energy Fuels, 2021, 5, 2415-2418.
- J. H. Moon, M. Y. Lee, B. C. Park, Y. S. Jeon, S. Kim, T. Kim, M. J. Ko, K. H. Cho, K. T. Nam and Y. K. Kim, *Small*, 2021, e2103575.
- 17. C. Li, Y. Fu, Z. Wu, J. Xia and X. Wang, Nanoscale, 2019, 11, 12997-13006.
- Y. Li, J. Li, J. Huang, J. Chen, Y. Kong, B. Yang, Z. Li, L. Lei, G. Chai, Z. Wen, L. Dai and Y. Hou, Angew.Chem. Int. Ed., 2021, 60, 9078-9085.
- W. Ye, Y. Yang, M. Arif, S. Yang, X. Fang, M. A. Mushtaq, X. Chen and D. Yan, ACS Sustain. Chem. Eng., 2020, 8, 15946-15952.
- Y. Wang, X. Cui, J. Zhao, G. Jia, L. Gu, Q. Zhang, L. Meng, Z. Shi, L. Zheng, C. Wang, Z. Zhang and W. Zheng, *ACS Catal.*, 2018, 9, 336-344.
- W. Li, D. He, G. Hu, X. Li, G. Banerjee, J. Li, S. H. Lee, Q. Dong, T. Gao, G. W. Brudvig, M. M. Waegele, D. E. Jiang and D. Wang, ACS Cent Sci, 2018, 4, 631-637.
- Y. Song, Y. Zhao, G. Nan, W. Chen, Z. Guo, S. Li, Z. Tang, W. Wei and Y. Sun, *Appl. Catal. B-Environ.*, 2020, 270, 118888.
- Z. Guo, W. Chen, Y. Song, X. Dong, G. Li, W. Wei and Y. Sun, *Chinese J. Catal.*, 2020, 41, 1067-1072.
- Y. Liu, X. Zhu, Q. Zhang, T. Tang, Y. Zhang, L. Gu, Y. Li, J. Bao, Z. Dai and J.-S. Hu, J. Mater. Chem. A, 2020, 8, 8920-8926.

- M. Ma, C. Oh, J. Kim, J. H. Moon and J. H. Park, *Appl. Catal. B-Environ.*, 2019, 259, 118095.
- M. Ma, B. J. Jin, P. Li, M. S. Jung, J. I. Kim, Y. Cho, S. Kim, J. H. Moon and J. H. Park, *Adv. Sci.*, 2017, 4, 1700379.
- C. Oh, J. Kim, Y. J. Hwang, M. Ma and J. H. Park, *Appl. Catal. B-Environ.*, 2021, 283, 119653.
- 28. J. Wu, J. H. Li and Y. X. Yu, ACS Appl. Mater. Interfaces, 2021, 13, 10026-10036.
- 29. J. Lee, J. Yang and J. H. Moon, ACS Energy Letters, 2021, 893-899.