Supporting Information

Nickel-cobalt bimetallic tungstate decorated 3D hierarchical porous carbon derived from lignin for high-performance supercapacitor applications

Feiyan Shi ^a[†], Shuai Zhao ^c[†], Junyu Yang ^b, Yao Tong^a, *, Jiajun Li ^a, Shangru Zhai ^a,

Xinyu Zhao^a, Shenghan Wu^a, Hongsheng Li^a, Qingda An^{a, *}, Kai Wang^{b, *}

^aFaculty of Light Industry and Chemical Engineering, Dalian Polytechnic University,

Dalian 116034, Liaoning, China

^bDalian National Laboratory for Clean Energy; Dalian Institute of Chemical Physics,

Chinese Academy of Sciences, Dalian 116023, China

^cSchool of Science, Chongqing University of Technology, Chongqing 400054, China

F. Shi and S. Zhao contributed equally to this work.

*Corresponding authors:

E-mail address: anqingdachem@163.com; wangkai@dicp.ac.cn;

tongyao@dlpu.edu.cn.

Fig. S1. (a) low and (b) high magnification SEM images of $Ni_{3.5}Co_{0.5}WO_4/HPC$; (c) low and (d) high magnification SEM images of $Ni_{2.5}Co_{1.5}WO_4/HPC$ and (e) low and (f) high magnification SEM images of $Ni_2Co_2WO_4/HPC$.

Fig. S2. (a) SEM images of the $Ni_3Co_1WO_4/HPC$, (b-f) EDS spectrum of $Ni_3Co_1WO_4/HPC$ nanocomposite.

Fig. S3. The high resolution XPS spectra of Survey spectrum.

Fig. S4. High resolution XPS spectrum of Ni, Co and W in Ni_{4-x}Co_xWO₄/HPC and Ni₃Co₁WO₄.

Fig.S5. The contact angles of the Ni₃Co₁W, Ni₃Co₁W/HPC and HPC.

Fig.S6. GCD curves of HPC in a three-electrode system in 6 M KOH.

Fig. S7. CV curves at different scan rates of (a) Ni_{3.5}Co_{0.5}WO₄/HPC, (b) Ni_{2.5}Co_{1.5} WO₄/HPC, (c)

 $Ni_2Co_2WO_4/HPC$, the variation of the current of the cathodic and anodic peaks for the electrodes as a function of the square root of scan rate of (d) $Ni_{3.5}Co_{0.5}WO_4/HPC$, (e) $Ni_{2.5}Co_{1.5}WO_4/HPC$, and (f) $Ni_{2.5}Co_{1.5}WO_4/HPC$.

Fig.S8. GCD curves of (a) $Ni_{3.5}Co_{0.5}WO_4/HPC$, (b) $Ni_{2.5}Co_{1.5}WO_4/HPC$ and (c) $Ni_2Co_2WO_4/HPC$

determined in a three-electrode system in 6M KOH.

Fig.S9. CV curves of Ni₃Co₁W/HPC nanocomposite in different potential windows in a twoelectrode system in 6M KOH.

 $\label{eq:Fig.S10.} Fig.S10. \ CV \ curves \ of \ (a) \ Ni_{3.5}Co_{0.5}WO_4/HPC, \ (b) \ Ni_{2.5}Co_{1.5} \ WO_4/HPC \ and \ (c) \ Ni_2Co_2WO_4/HPC, \ (b) \ Ni_{2.5}Co_{1.5} \ WO_4/HPC \ (c) \ Ni_2Co_2WO_4/HPC, \ (c) \ Ni_2$

GCD curve of (d) $Ni_{3.5}Co_{0.5}WO_4/HPC$, (e) $Ni_{2.5}Co_{1.5}WO_4/HPC$ and (f) $Ni_2Co_2WO_4/HPC$ determined in a two-electrode system in 6M KOH.

Sample	$S_{BET} (m^2 g^{-1})$	S _{micro} (m ² g ⁻¹)	V _{total} (cm ² g ⁻¹)	V _{micro} (cm ² g ⁻¹)
Ni ₃ Co ₁ WO ₄	53	-	0.086	-
Ni _{3.5} Co _{0.5} WO ₄ /HPC	282	49	0.44	0.021
Ni ₃ Co ₁ WO ₄ /HPC	300	91	0.38	0.041
Ni _{2.5} Co _{1.5} WO ₄ /HPC	281	76	0.29	0.034
Ni ₂ Co ₂ WO ₄ /HPC	235	75	0.33	0.033

Table S1. Pore textural properties of the pure NiCoWO₄ and NiCoWO₄/HPC composites.

Table S2. XPS of all the samples.

Samples	Ni ³⁺ (at %)	Ni ²⁺ (at %)	Ni ^{3+/} Ni ²⁺	Co ³⁺ (at %)	Co ²⁺ (at %)	Co ³⁺ / Co ²⁺	W (at %)
Ni ₃ Co ₁ WO ₄	5.01	2.74	1.83	1.9	1.62	1.17	5.42
Ni _{3.5} Co _{0.5} WO ₄ /HPC	3.32	1.66	2.00	0.75	0.61	1.23	2.82
Ni ₃ Co ₁ WO ₄ /HPC	3.29	1.99	1.65	0.96	0.92	1.04	2.81

Table S3. The fitted result of EIS data.

Sample	R _{ct}	R _s
Ni _{3.5} Co _{0.5} WO ₄ /HPC	0.54	0.44
Ni ₃ Co ₁ WO ₄ /HPC	0.47	0.36
Ni _{2.5} Co _{1.5} WO ₄ /HPC	0.96	0.45
Ni ₂ Co ₂ WO ₄ /HPC	1.26	0.45

Sample	Diffusion coefficients of OH ⁻ $(D_{\rm OH^-} \times 10^{-8}/{\rm cm}^2 \cdot {\rm s}^{-1})$			
Sumpto	Ni^{2+}/Ni^{3+}	Co ²⁺ /Co ³⁺ /Co ⁴⁺		
Ni _{3.5} Co _{0.5} WO ₄ /HPC	7.38	4.65		
Ni ₃ Co ₁ WO ₄ /HPC	7.95	5.01		
Ni _{2.5} Co _{1.5} WO ₄ /HPC	5.2	3.28		
Ni ₂ Co ₂ WO ₄ /HPC	4.08	2.57		

Table S4. The OH⁻ diffusion coefficients in NiCoWO₄/HPC

Nano-structure	Preparation method	Electrolyte	Sc (F·g ⁻¹ / C·g ⁻¹)	Specifc current	Cycling stability	Ref.
NiWO ₄ nano-structure	Preparation method	2 M KOH	586.2	$0.5 \ \mathrm{A} \cdot \mathrm{g}^{-1}$	91.4% over 5000 cycles at 2 A·g–1	1
RGO/CoWO ₄ nanocomposites	Hydrothermal	2 M KOH	159.9/112.0	$5 \text{ mV} \cdot \text{s}^{-1}$	94.7 % over 1000 cycles at 1 A $\cdot g^{-1}$	2
CoWO4@NiWO4 nanocomposites	Co-precipitation	1 M KOH	746/410	$1 \text{ A} \cdot \text{g}^{-1}$	91.3 % over 2000 cycles at 2 A $\cdot g^{-1}$	3
NiWO ₄ /Ni foam nanostructures NiWO ₄ nanoparticles Co ₃ O ₄ @CoWO ₄ /rGO core–shell arrays	Precipitation Precipitation Hydrothermal- annealing	2 M KOH 2 M KOH 6 M KOH	797.8/359.0 173/104 386/193	$1 \text{ A} \cdot \text{g}^{-1}$ 5 mV $\cdot \text{s}^{-1}$ 0.5 A $\cdot \text{g}^{-1}$	206 % over 6000 cycles at 50 mV \cdot s^{-1} 90 % over 1000 cycles at 2 mA \cdot cm^{-1} \setminus	4 5 6
NiWO ₄ /RGO nanocomposite	Solvothermal	2 M KOH	1031.3/618.8	$0.5 \ \mathrm{A}{\cdot}\mathrm{g}^{-1}$	100 % over 5000 cycles at 20 mV $\cdot s^{-1}$	7
NiWO ₄ -CoWO ₄ nanocomposite	Precipitation	2 M KOH	491.8/196.7	$0.5 \ \mathrm{A} \cdot \mathrm{g}^{-1}$	/	8
CoWO ₄ /NRGO	Situ sonochemica approach	^{ll} 2M H ₂ SO ₄	597	$5 \text{ mV} \cdot \text{s}^{-1}$	97.1 % over 4000 cycles at 200 mV $\cdot \rm s^{-1}$	9
CoWO ₄ nanoparticles	Hydrothermal- annealing	1 M H ₂ SO ₄	378/265	$5 \text{ mV} \cdot \text{s}^{-1}$	95.5 % over 4000 cycles at 200 mV $\cdot \rm s^{-1}$	10
CoWO4@NiWO4-A	Co-precipitation	1 M KOH	677.5	$1 \text{ A} \cdot \text{g}^{-1}$	82 % over 5000 cycles at 5 $\rm A{\cdot}g^{-1}$	11
Co ₃ O ₄ /CoWO ₄ heterojunctions	Hydrothermal	6 М КОН	396.9	$1 \text{ A} \cdot \text{g}^{-1}$	70.2 % over 2000 cycles at 7 $A{\cdot}g^{-1}$	12

Table S5. The comparison of the electrochemical property of various Co/Ni-based metal tungstates.

Nano-structure	Preparation method	Electrolyte	Sc (F·g ⁻¹ / C·g ⁻¹)	Specifc current	Cycling stability	Ref.
NiCo ₂ O ₄ @NiWO ₄ core-shell nanowire	Hydrothermal- annealing	6 M KOH	1384/692	$1 \text{ A} \cdot \text{g}^{-1}$	87.6 % over 6000 cycles at 1 $A \cdot g^{-1}$	13
Ni _{0.85} Co _{0.15} WO ₄ Nanosheet	Co-precipitation	1 M KOH	360	$0.1 \mathrm{A} \cdot \mathrm{g}^{-1}$	\	14
NiWO ₄ nanowires	Solvothermal	6 M KOH	1190/595	$0.5 \ \mathrm{A} \cdot \mathrm{g}^{-1}$	/	15
CoNiWO ₄ /P-S-GNS nanocomposite	Hydrothermal	6 M KOH	1298.6	$0.5 \mathrm{A} \cdot \mathrm{g}^{-1}$	95.5 % over 7000 cycles	16
2D CNWO porous thin sheets	Hydrothermal	6 M KOH	1392/626.4	$1 \text{ A} \cdot \text{g}^{-1}$	105.27 % over 10,000 cycles at 10 A·g	17
CoWO4/Ni anocomposite	Co-precipitation	6 M KOH	271	$1 \text{ A} \cdot \text{g}^{-1}$	86.4 % over 1,500 cycles at 5 $\rm A{\cdot}g^{-1}$	18
Ni _{0.5} Co _{0.5} WO ₄	Hydrothermal	3 М КОН	34.55	$1 \text{ A} \cdot \text{g}^{-1}$	92 % over 10,000 cycles at 10 $A \cdot g^{-1}$	19
NiWO ₄ nanoparticles	Hydrothermal	2 M KOH	427	$1 \text{ A} \cdot \text{g}^{-1}$	99 % over 1000 cycles	20
P-NiWO4@CoWO4	Hydrothermal	6 М КОН	1683.4	$1 \text{ A} \cdot \text{g}^{-1}$	84 % over 1000 cycles at 1 mA \cdot cm ⁻¹	21
Ni ₃ Co ₁ WO ₄ /HPC	Co-precipitation	6 М КОН	1084	$0.5 \ A \cdot g^{-1}$	80.74 % over 10,000 cycles at 10 A·g ⁻¹	This work

References

- 1. Z. L. L Niu, Y Xu, J Sun, W Hong, X Liu, J Wang, and S Yang, ACS Applied Materials Interface, 2013, 5, 8044-8052.
- 2. X. Xu, J. Shen, N. Li and M. Ye, *Electrochimica Acta*, 2014, **150**, 23-34.
- X. Xu, J. Gao, G. Huang, H. Qiu, Z. Wang, J. Wu, Z. Pan and F. Xing, *Electrochimica Acta*, 2015, **174**, 837-845.
- 4. G. He, J. Li, W. Li, B. Li, N. Noor, K. Xu, J. Hu and I. P. Parkin, *Journal of Materials Chemistry A*, 2015, **3**, 14272-14278.
- S. R. E. U Nithiyanantham, S Anantharaj, and Subrata Kundu, *Crystal Growth & Design*, 2014, DOI: 10.1021/cg501366d.
- Y. Y. Xiaowei Xu, Man Wang, Pei Dong, Robert Baines, Jianfeng Shen, Mingxin Ye, *Ceramics International*, 2016, DOI: 10.1016/j.ceramint.2016.03.192.
- 7. X. Xu, L. Pei, Y. Yang, J. Shen and M. Ye, Journal of Alloys and Compounds, 2016, 654, 23-31.
- C. S. Yidan Wang, Lengyuan Niu, Zhenkun Sun, Fengping Ruan, Man Xu, Shen Shan, Can Li, Xinjuan Liu, Yinyan Gong, *Materials Chemistry & Physics*, 2016, 182, 394-401.
- H. R. Naderi, A. Sobhani-Nasab, M. Rahimi-Nasrabadi and M. R. Ganjali, *Applied Surface Science*, 2017, 423, 1025-1034.
- K. Adib, M. Rahimi-Nasrabadi, Z. Rezvani, S. M. Pourmortazavi, F. Ahmadi, H. R. Naderi and M. R. Ganjali, *Journal of Materials Science: Materials in Electronics*, 2016, 27, 4541-4550.
- D. A. M Feng, H Zhang, G Ma, C Zhang and Z Ma, *International Journal of Chemical Studies*, 2017, 5, 1954-1960.
- 12. X. Z. K Ding, J Li, P Yang, X Cheng, ChemElectroChem, 2017, 4, 3011-3017.
- 13. S. Chen, G. Yang, Y. Jia and H. Zheng, Journal of Materials Chemistry A, 2017, 5, 1028-1034.
- 14. Y. Huang, C. Yan, X. Shi, W. Zhi, Z. Li, Y. Yan, M. Zhang and G. Cao, *Nano Energy*, 2018, **48**, 430-440.
- 15. J. Tian, Y. Xue, X. Yu, Y. Pei, H. Zhang and J. Wang, *RSC Advances*, 2018, **8**, 41740-41748.
- A. S. Rajpurohit, N. S. Punde, C. R. Rawool and A. K. Srivastava, *Chemical Engineering Journal*, 2019, 371, 679-692.
- 17. B. Huang, H. Wang, S. Liang, H. Qin, Y. Li, Z. Luo, C. Zhao, L. Xie and L. Chen, *Energy Storage Materials*, 2020, **32**, 105-114.
- K. Thiagarajan, D. Balaji, J. Madhavan, J. Theerthagiri, S. J. Lee, K. Y. Kwon and M. Y. Choi, *Nanomaterials (Basel)*, 2020, 10.
- S. Prabhu, C. Balaji, M. Navaneethan, M. Selvaraj, N. Anandhan, D. Sivaganesh, S. Saravanakumar, P. Sivakumar and R. Ramesh, *Journal of Alloys and Compounds*, 2021, 875, 160066.
- 20. R. Packiaraj, P. Devendran, K. S. Venkatesh and N. Nallamuthu, *Inorganic Chemistry Communications*, 2021, **126**, 108490.
- Q. H. Wenkang Miaoa, Hongming Zhanga, Kangli Chena, Lu Zhanga, Yuan Lia,* and S. H., Journal of Alloys and Compounds, 2021, 877, 160301.