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Experimental Section

Synthesis of HMP-PPR:

5,10,15,20-Tetrakis(4-aminophenyl)porphyrin (0.08 g, 0.118 mmol) was taken in a flame dried 

round bottom flask (RBF-1) and dissolved in 1,4-dioxane (40 ml). Trimethylamine (1 ml) was 

added and the RBF was stirred for 20 min at room temperature. In RBF-2, trichloroheptazine 

(0.042 g, 0.153 mmol) was dissolved in 10 ml of dioxane. This solution of RBF-2 was then 

added to RBF-1 dropwise with constant stirring over the period of 20 min. The reaction mixture 

was stirred at room temperature for 2 h and then refluxed for 72 h. After that, the reaction 

mixture was brought to room temperature and then poured over cold water. The precipitates were 

collected by filtration and washed with dioxane, tetrahydrofuran (THF), methanol and acetone.  

The precipitates were further purified by soxhlet extraction in THF: methanol (1:1) mixture for 

48 h. The precipitates were then collected and dried at 120 oC in the vacuum oven overnight.
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HMP-PPR

Scheme S1. Synthesis route to obtain HMP-PPR. (a) trimethylamine, 1,4-
dioxane, and reflux for 48 h. 



Fig. S1. Structural characterization of HMP-PPR using (a) FTIR and (b) 13C-CP/MAS NMR 
techniques.
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Fig. S2.  (a) Powder-XRD and (b) N2 adsorption-desorption isotherm of HMP-
PPR.
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Fig. S3.  (a) Thermogravimetric data of HMP-PPR under N2 atmosphere and (b) SEM images 
showing the morphology of HMP-PPR. 
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Fig. S4.  XPS-survey scan of HMP-PPR.
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Fig. S5.  (a) Photoluminescence spectrum (PL) of HMP-PPR (excitation at 400 
nm), and (b) PL data of HMP-PPR at different excitation wavelengths.
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Fig. S6.  FTIR spectra of HMP-PPR before and after the 
photocatalysis.

900 1200 1500 1800
Wavenumber (cm-1)

 before 
 after



Photooxygenation of DHN (1,5-dihydroxynaphthalene) to juglone

In order to understand the role of triplet excited states, we have performed the experimental 
investigation to identify the formation of singlet oxygen studies over HMP-PPR. The 
photooxygenation of DHN (1,5-dihydroxynaphthalene) to juglone is controlled by the 
availability of singlet oxygen species (1O2) which could be formed by photocatalyst (HMP-PPR 
in our case) with suitably high triplet state energy. As shown in Figure S9 a and b, the rate of 
formation of juglone is not matching with rate of decay of 1,5-DHN. These results showed that 
the singlet oxygen was not produced under these experimental conditions over HMP-PPR. This 
rule out the possibility of the formation of triplet excited states of HMP-PPR which could 
transform 3O2 to 1O2. 
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Fig. S7. Photooxidation of 1,5-dihydroxynaphthalene to juglone. (a) Time-dependent 
absorption spectra of 1,5-DHN under visible light in presence of HMP-PPR. Reaction 
conditions: 2 mg HMP-PPR, 2 mL IPA and 5 mL ACN, 1 atm O2, and λ > 420 nm. (b) 
Comparison of decay rate of 1,5-DHN (at 329 nm) and formation rate of juglone (424 nm) in 
presence of HMP-PPR.



Fig. S9. (a) Lifetime decay curves for HMP-PPR and g-CN, (b) Photoluminescence spectra 
(PL) of g-CN (excitation wavelength: 390 nm) and HMP-PPR (excitation wavelength 390 
nm). 
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Fig. S8.  Photocurrent generation during light on and off cycle.



Table S1. Summary of SCC efficiency of g-CN based photocatalysts for solar to H2O2 
production from water.

S. 
No

Catalyst Catalyst Light 
source

SCC(%) Ref

1 HMP-PPR 0.5 g/L Sun 0.07 This work
2 CO/AQ/C3N4 0.5 g/L AM 1.5G 0.014 1
3 PEI/g-C3N4 1 g/L AM 1.5G 0.045 2
4 Nv-C≡N-CN 1 g/L AM 1.5G 0.23 3

*SCC = solar to chemical conversion
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