Supporting Information

Modulation of coordination environment enhances electrocatalytic efficiency of Mo single atoms toward water splitting

Chih-Chieh Cheng,^a Yong-Xian Yeh,^a Yu-Chieh Ting,^a Shin-Hong Lin,^a Kotaro Sasaki,^b YongMan Choi,^{c*} Shih-Yuan Lu^{a*}

Affiliations:

^aDepartment of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
^bChemistry Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
^cCollege of Photonics, National Yang Ming Chiao Tung University, Tainan 71150, Taiwan.

Email: <u>ymchoi@nctu.edu.tw</u> (Y. Choi); <u>sylu@mx.nthu.edu.tw</u> (S.-Y. Lu)

Computational methods

All spin-polarized periodic density functional theory (DFT) calculations were performed using the Vienna Ab initio Simulation Package (VASP)1-2 to systematically examine the HER activity of the three single-atom catalysts (SACs) of Mo-O₂C₂, Mo-O₂N₁C₁, and Mo-O₂N₂. We used revised Perdew-Burke-Ernzerh (RPBE) functional³ within the generalized gradient approximation (GGA) for modeling the exchangecorrelation energy and the projector augmented plane wave (PAW) method⁴ for describing ionic cores. The tetrahedron method with Blöchl corrections of $\sigma = 0.05$ eV was employed, while 600 eV of the plane-wave cutoff energy was used. To prepare 2Dslab models for Mo-O₂C₂, Mo-O₂N₁C₁, and Mo-O₂N₂, a bulk graphite model (hexagonal, P63/mmc) was first prepared. To get accurate lattice constants of the bulk graphite (Figure S17),⁵ Brillouin-zone integrations were performed on a grid of $(12 \times$ 12×8) k-point meshes with the Monkhorst–Pack method.⁶ (3 × 3 × 1) k-point meshes were used for 2D-slab model calculations. Our computational method using the DFT-D3 method in the RPBE level (RPBE/DFT-D3) reproduced the experimental value of the graphite interlayer spacing⁵ at 4.2 K (3.336 Å versus 3.3111 Å, respectively). In addition, we compared the reference value of hydrogen adsorption energy and its Gibbs free energy on $p(2 \times 2)$ four-layered $Pt(111)^7$ in the RPBE level. As shown in Figure S17, the hexagonally networked graphite layers are combined by van der Waals forces with an interval of 3.3111 Å and a CC-bond length of 1.4273 Å. The calculated lattice parameters a = 2.4722 Å and c = 6.6222 Å are in line with the experimental values.^{5, 8} As its (0001) facet is the basal plane and principally exposed,⁹ we first applied the threelayer (0001) surface for generating Mo-containing SAC models. Figure S17 and Figure S18, respectively, show the structures of bulk graphite and a periodically extended $6 \times$ 6 surface model (216 C atoms) with 15 Å of a vacuum space to separate the slabs. The bottom two layers were fixed to the bulk properties. Then, we generated fourcoordinated Mo centers by following the experimental results. For the three-layer model, only the top-most layer and the adsorbate (*i.e.*, hydrogen atoms) were allowed to fully relax, whereas its bottom two layers were fixed at the bulk properties. A onelayer graphene model was examined to save computational time as shown in Figure S18. We confirmed that the difference of hydrogen adsorption energies between oneand three-layer models ($\sim 0.3 \text{ eV}$) may be negligible. Then, the one-layer model was used to propose plausible surface configurations supporting the experimental findings via extensive calculations. To verify the computational approach, as summarized in Table S3, a (2×2) surface of Pt(111) (16 Pt atoms) was applied. Only the most stable three-fold fcc active site was used for obtaining hydrogen adsorption energies. Without applying the dispersion correction, it agrees with that in the literature.⁷ To accurately evaluate the HER activity of Mo-O₂C₂, Mo-O₂N₁C₁, and Mo-O₂N₂, the Gibbs free

energy change of hydrogen adsorption ($^{\Delta G_H}$) is used as a crucial descriptor and defined as the following expression.⁷

$$\Delta G_H = \Delta E_H - T \Delta S_H + \Delta E_{ZPE} \tag{1}$$

where ΔE_H is the adsorption energy of a hydrogen atom adsorbed at the Mo metal center of the SAC.

 $\Delta E_{\rm H} = E({\rm H-SAC}) - E({\rm SAC}) - 1/2E({\rm H}_2) \qquad (2)$ where E(H-SAC), E(SAC), and E(H₂) are the calculated energies of the SAC with an adsorbed hydrogen species, the clean SAC surface, and gas-phase H₂, respectively. $\Delta S_H \text{ and } \Delta E_{ZPE} \text{ are the entropy difference and zero-point energy (ZPE) of adsorbed}$ hydrogen and gas-phase hydrogen, respectively. T is the temperature at 298.15 K. As the vibrational entropy term of an adsorbed hydrogen atom is negligible (Table S3), the

entropy change is approximated by using $\Delta S_H \approx -\frac{1}{2} S_{H_2}^0$ at the standard conditions. ZPEs

$$E_{ZPE} = \sum_{i=1}^{n} \frac{1}{2} h v_i$$

are calculated by $i=1^{2}$, where v_i is the vibrational frequency. The Dmol³ module¹⁰⁻¹¹ implemented in the Materials Studio package¹² was used to obtain the correction energy of the Gibbs free energy $({}^{-T\Delta S_H} + {}^{\Delta E_{ZPE}})$ using the optimized geometries from VASP calculations. The double numerical polarization (DNP) 4.4 basis, the all-electron method, and the RPBE exchange-correlation functional were applied for the single-point energy calculations. As summarized in Table S3, the correction energy is close to the value reported in the literature and is a constant. The minor discrepancy results from different computational methods. Therefore, to be consistent with the literature,⁷ we used the literature value of 0.24 eV, and the overall correction is taken as ${}^{\Delta G_H} = {}^{\Delta E_H} + 0.24 eV$. The charge density difference was calculated according to the following expression

$$\Delta \rho = \rho_{H-SAC} - (\rho_{SAC} + \rho_{H})$$

where ρ_{H-SAC} , ρ_{SAC} , and ρ_{H} are the charge density of Mo SAC with adsorbed H, SAC, and H, respectively. The charge density differences were rendered using VESTA.¹³

Figure S1. ATR-FTIR spectra of phen and Mo-phen_{b650}.

Figure S2. Powder XRD patterns of phen and Mo-phen_{b650}.

Figure S3. Powder XRD patterns of CB-Mo_{a650}, Mo-phen_{a650}, and Mo-O₂C₂.

Figure S4. SEM images of (a) $Mo-O_2C_2$, (b) $Mo-O_2N_1C_1$, and (c) $Mo-O_2N_2$.

Figure S5. High magnification HAADF-STEM images of (a) Mo- O_2C_2 , (b) Mo- $O_2N_1C_1$, and (c) Mo- O_2N_2 .

Figure S6. HR-TEM images and corresponding SAED patterns (inset) of (a) Mo- $O_2N_1C_1$ and (b) Mo- O_2N_2 . EDS elemental mapping of (c) Mo- $O_2N_1C_1$ and (d) Mo- O_2N_2 (scale bar: 100 nm).

catalyst	path	C.N.ª	$R(\text{\AA})^{ ext{b}}$	$\begin{array}{c} \Delta E_0 \\ (\mathrm{eV})^\mathrm{c} \end{array}$	$\sigma^2(\text{\AA}^2)^{ ext{ d}}$	<i>R</i> factor ^e
Mo-O ₂ C ₂	Mo-O	2.26±0.09	1.72	7.24	0.0020	0.004
	Mo-C	2.08±0.29	1.98	-7.24	0.0071	
Mo-O ₂ N ₁ C ₁	Mo-O	2.08 ± 0.08	1.70		0.0020	0.002
	Mo-C	0.82±0.13	2.02	-6.70	0.0090	
	Mo-N	0.79±0.20	2.18		0.0030	
Mo-O ₂ N ₂	Mo-O	2.06±0.07	1.74	8.50	0.0021	0.002
	Mo-N	1.79±0.24	2.14	-8.50	0.0080	0.002

Table S1. Optimal fitting results for EXAFS data of Mo-O₂C₂, Mo-O₂N₁C₁, and Mo-O₂N₂.

^a*C.N.*, coordination number; ^b*R*, distance between absorber and backscatter atoms; ^c ΔE_0 , inner potential correction; ^d σ^2 , Debye-Waller factor, thermal and structural disorders; ^c*R* factor, an indicator of fitting accuracy. S_0^2 was set to 0.95. Fitting ranges were all set to 1.0 < R < 2.0 Å.

Figure S7. First-shell fitting of k^3 -weighted EXAFS in *R* space and inversed FT-EXAFS fitting paths in *k* space. (a) and (b) Mo-O₂C₂, (c) and (d) Mo-O₂N₁C₁, (e) and (f) Mo-O₂N₂. Fitting ranges were all set to 1.0 < R < 2.0 Å.

Figure S8. FTIR spectrum of CB.

sample	productor	N/C molar ratio in	
sample	precursor	precursor	
Ma O C	CB (150 mg),	0.08 (100% from phen,	
Mo-O ₂ C ₂	phen (216 mg)	0% form DCD)	
	CB (150 mg),	0.25	
Mo-O ₂ N ₁ C ₁	phen (216 mg),	(32% from phen, 68%	
	DCD (100 mg)	from DCD)	
	CB (150 mg),	0.20(180) from them	
Mo-O ₂ N ₂	phen (216 mg),	0.39 (18% from phen,	
	DCD (200 mg)	82% from DCD)	

Table S2. Summary of precursors and N/C molar ratios for fabrication of Mo SACs.

Figure S9. HR-XPS spectra of (a) Mo- O_2C_2 , (b) Mo- $O_2N_1C_1$, and (c) Mo- O_2N_2 with fitted Mo $3d_{5/2}$ and Mo $3d_{3/2}$ curves plotted in red, and accumulation of fitted peaks plotted in black dashes.

Figure S10. Overlaid HR-XPS spectra of $Mo-O_2C_2$, $Mo-O_2N_1C_1$, and $Mo-O_2N_2$. (a) N 1s and (b) O 1s.

Figure S11. (a) LSV curves and (b) Tafel plots of NIF, CB-phen_{a650}, CB-phen-DCD100_{a650}, and CB-phen-DCD200_{a650} in 1.0 M KOH. CB-phen_{a650}, CB-phen-DCD100_{a650}, and CB-phen-DCD200_{a650} are control samples, prepared without presence of Mo precursor, corresponding to Mo-O₂C₂, Mo-O₂N₁C₁, and Mo-O₂N₂, respectively.

Figure S12. (a) LSV curves and (b) Tafel curves of $Mo-O_2C_2$ and rCB-Mo-phen_{a650} in 1.0 M KOH.

$R_{ct}\left(\Omega ight)$
0.70
1.32
2.07
2.72

Table S3. Summary of R_{ct} of sample electrodes determined at -0.17 V (vs. RHE) in 1.0 M KOH.

Figure S13. Electrochemical characterizations of $Mo-O_2C_2$, $Mo-O_2N_1C_1$, and $Mo-O_2N_2$ in 0.5 M H₂SO₄. (a) LSV curves and (b) Tafel plots.

Figure S14. Mass loading normalized LSV curves of $Mo-O_2C_2$, $Mo-O_2N_1C_1$, and $Mo-O_2N_2$ in (a) 1.0 M KOH and (b) 0.5 M H₂SO₄. Inset shows LSV curves in low current density region.

Figure S15. CVs of (a) $Mo-O_2C_2$, (b) $Mo-O_2N_1C_1$, and (c) $Mo-O_2N_2$ recorded at increasing scan rates from 10 to 150 mV s⁻¹ for estimating of C_{dl} in 1.0 M KOH.

Figure S16. Stability test of (a) $Mo-O_2N_1C_1$ and (b) $Mo-O_2N_2$ at initial current density of 100 mA cm⁻² in 1.0 M KOH for 50 h. Inset shows LSV curves before and after stability test.

Figure S17. Mo 3d HR-XPS spectra of $Mo-O_2C_2$ before and after stability test in 1.0 M KOH.

Figure S18. (a) SEM image and (b) high magnification HAADF-STEM image of $Mo-O_2C_2$ after stability test in 1.0 M KOH. Isolated Mo atoms were marked with red dashed circles.

Figure S19. Stability test of (a) $Mo-O_2C_2$, (b) $Mo-O_2N_1C_1$ and (c) $Mo-O_2N_2$ at the initial current density of -100 mA cm⁻² in 0.5 M H₂SO₄ for 50 h.

Figure S20. Faradaic efficiency of (a) Mo- O_2C_2 , (b) Mo- $O_2N_1C_1$, and (c) Mo- O_2N_2 determined at 100 mA cm⁻² for 60 minutes in 1.0 M KOH.

Figure S21. (a) Top and (b) side views of bulk graphite (hexagonal, *P63/mmc*) optimized at RPBE-DFT/D3, resulting in graphite interlayer spacing of 3.3111 Å and CC-bond length of 1.4273 Å. Calculated lattice parameters are a = 2.4722 Å and c = 6.6222 Å.

Figure S22. Top and side views of three-layered SA Mo-centered surface models: (a) without and (b) with graphitic N, and (c) one-layer graphene model.

Figure S23. Top and side views of three SA models of (a) $Mo-O_2C_2$, (b) $Mo-O_2N_1C_1$, and (c) $Mo-O_2N_2$.

Figure S24. Side views of hydrogen adsorption (ΔE_H) on three SA models of (a) Mo-O₂C₂, (b) Mo-O₂N₁C₁, and (c) Mo-O₂N₂.

Figure S25. Projected density of states (PDOSs) of orbitals of Mo d and H 1s of hydrogen adsorption on three SA models of (a) $Mo-O_2C_2$, (b) $Mo-O_2N_1C_1$, and (c) $Mo-O_2N_2$. Fermi energy level (E_F) is set to zero.

Table S4. (a) Compilation of electronic and thermodynamic properties for H_2 . (b) Calculated hydrogen adsorption properties on different surfaces.

(a)	ZPE (eV)	S (kcal/mol K)	S (eV) at 298.15 K	Remark
				RPBE &
H ₂	0.27	0.032542	0.42	RPBE/DFT-
				D3(BJ)

(b)	ZPE (eV)	$\Delta E_{\rm H}$ (eV)	Correction energy (eV)	$\Delta G_{\rm H} (eV)^{[1]}$	Remark
Pt(111)	0.175	-0.32	0.25	-0.07 (-0.08)	RPBE
Mo-O ₂ C ₂	0.104	-0.64	0.18	-0.46 (-0.40)	RPBE/DFT- D3(BJ)
Mo- O ₂ N ₁ C ₁	0.107	-0.76	0.18	-0.58 (-0.52)	RPBE/DFT- D3(BJ)
Mo-O ₂ N ₂	0.108	-0.81	0.18	-0.63 (-0.57)	RPBE/DFT- D3(BJ)

[1] Values in parentheses are calculated according to $\Delta G_H = \Delta G_H + 0.24$ and were used to prepare Gibbs energy diagram in the main text.⁶

Figure S26. Illustration of calculated Gibbs free energies and overpotentials measured at 10 mA/cm² for Mo-O₂C₂, Mo-O₂N₁C₁, and Mo-O₂N₂ against d-band center of their Mo metal centers.

[1				,
Catalyst	SA Concentration	Electroly te	Over- potential (mV)	Tafel slope (mV dec ⁻¹)	Stability
Mo-O ₂ C ₂	Mo (3.14 wt%)	1.0 M KOH	$61(\eta_{10}), \\ 200(\eta_{500})$	33.8	i-t at -100 mA cm ⁻² for 50 h, 6% decayed
(this work)		0.5 M H ₂ SO ₄	63(η ₁₀), 244(η ₅₀₀)	34.4	i-t at -100 mA cm ⁻² for 50 h, 12% decayed
Mo ₁ N ₁ C ₂ ¹⁴	1.32 wt%	0.1 М КОН	132(η ₁₀)	90	negligible decayed after 1000 CV cycles
Mo-	Mo (18.16	1.0 M KOH	~270	N/A	N/A
SA@NCA ¹⁵	wt%)	0.5 M H ₂ SO ₄	~220	N/A	
Ni/GD ¹⁶	Ni (0.278 wt%)	0.5 М Н ₂ SO	88(ŋ ₁₀)	45.8	i-t at -10 mA cm ⁻² for 116 h, negligible decayed
Fe/GD ¹⁶	Fe (0.680 wt%)	0.5 M H ₂ SO ₄	66(η ₁₀)	37.8	i-t at -30 mA cm ⁻² for 60 h, ~20% decayed
Co ₁ /PCN ¹⁷	Co (0.3 wt%)	1.0 М КОН	138(ŋ ₁₀)	52	i-t at -10 mA cm ⁻² for 24 h, negligible decayed
$\begin{array}{c} \text{Co-}D_1\text{T}\\ \text{MoS}_2^{18} \end{array}$	Co (3.54 wt%)	0.5 M H ₂ SO	42(η ₁₀)	32	i-t at -34 mA cm ⁻² for 2.8 h,

Table S5. Comparison of HER efficiency and stability of recently reported state-of-the-art SACs.

					negligible
					decayed
MCM@Mo	Ni (2.7 wt%)	0.5 M	53(η ₁₀)	81	i-t at ~62 mA cm ⁻² for 24 h,
S_2-Ni^{19}		H_2SO_4			slightly decayed
W-SAC ²⁰	W (1.21 wt%)	0.1 M KOH	85(ŋ ₁₀)	53	i-t at -10 mA cm ⁻² for 11.1 h, ~25% decayed
\mathbf{D} t /N \mathbf{C}^{21}	Dt(2.5,yyt0/)	1.0 M KOH	46(η ₁₀)	36.8	i-t at -10 mA cm ⁻² for 20 h,
Pt ₁ /N-C ²¹	Pt (2.5 wt%)	0.5 M H ₂ SO ₄	19(η ₁₀)	14.2	negligible decayed
Ni ₅ P ₄ -Ru ²²	Ru (3.83 wt%)	1.0 M KOH	54(η ₁₀)	52.0	i-t at -20 mA cm ⁻² for 60 h, than, at -35 mA cm ⁻² for 60 h, negligible decayed
1Pt/VS ₂ /CP 23	Pt (3.16 wt%)	0.5 M H ₂ SO ₄	77(η ₁₀)	40.13	i-t at ~ -18 mA cm ⁻² for 12 h, negligible decayed
Ru SAs/N- Mo ₂ C NSs ²⁴	Ru (2.61 wt%)	1.0 М КОН	43(η ₁₀)	38.67	i-t at ~ -150 mA cm ⁻² for 60 h, slightly decayed
Co-SAC ²⁵	Co (0.29 at%)	0.5 M H ₂ SO ₄	230(η ₁₀)	99	slightly decayed after 1000 CV cycles
Ni-SAC ²⁵	Ni (0.30 at%)	112504	530(η ₁₀)	167	N/A
W-SAV ²⁵	W (0.36 at%)		590(η ₁₀)	122	N/A
CoSAs/PTF -600 ²⁶	Co (0.85 wt%)	0.5 M H ₂ SO ₄	94(η ₁₀)	50	N/A
		1.0 M KOH	170(η ₁₀)	75	N/A
CoN _x /C ²⁷	Co (0.14 wt%)	0.5 M H ₂ SO ₄	133(η ₁₀)	57	slightly decayed after 5000 CV cycles
Ni _{sa1.5} -	Ni (5.01 at%)	1.0 M	196(η ₁₀)	87	i-t at ~ -10.90

MoS ₂ ²⁸	K	HC	mA cm ⁻² for 10
			h, negligible
			decayed

References

- 1. Kresse, G.; Hafner, J., Phys. Rev. B 1993, 47, 558-561.
- 2. Kresse, G.; Furthmuller, J., Phys. Rev. B 1996, 54, 11169-11186.
- 3. Perdew, J. P.; Burke, K.; Ernzerhof, M., Phys. Rev. Lett. 1996, 77 (18), 3865-3868.
- 4. Kresse, G.; Joubert, D., Phys. Rev. B 1999, 59 (3), 1758-1775.
- 5. Baskin, Y.; Meyer, L., Phys. Rev. 1955, 100 (2), 544-544.
- 6. Monkhorst, H. J.; Pack, J. D., Phys. Rev. B 1976, 13 (12), 5188-5192.
- Nørskova, J. K.; Bligaarda, T.; Logadottira, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U., *J. Electrochem. Soc.* 2005, 152 (3), J23-J26.
- 8. Furthmüller, J.; Hafner, J.; Kresse, G., Phys. Rev. B 1994, 50 (21), 15606-15622.
- 9. He Man-Chao, Z. J., Chin. Phys. B 2013, 22 (1), 16802-016802.
- 10. Delley, B., J. Chem. Phys. 1990, 92 (1), 508-517.
- 11. Delley, B., J. Chem. Phys. 2000, 113 (18), 7756-7764.
- 12. Dassault Systèmes BIOVIA. Materials Studio, version 18.1.0.2017, https://www.3dsbiovia.com/ 2018.
- 13. Momma, K.; Izum, F., J. Appl. Crystallogr. 2011, 44, 1272-1276.
- Chen, W.; Pei, J.; He, C. T.; Wan, J.; Ren, H.; Zhu, Y.; Wang, Y.; Dong, J.; Tian, S.; Cheong, W. C., *Angew. Chem. Int. Ed.* 2017, 56 (50), 16086-16090.
- Cheng, Y.; Guo, H.; Li, X.; Wu, X.; Xu, X.; Zheng, L.; Song, R., Chem. Eng. J. 2021, 410, 128359.
- 16. Xue, Y.; Huang, B.; Yi, Y.; Guo, Y.; Zuo, Z.; Li, Y.; Jia, Z.; Liu, H.; Li, Y., *Nature communications* **2018**, 9 (1), 1-10.
- Cao, L.; Luo, Q.; Liu, W.; Lin, Y.; Liu, X.; Cao, Y.; Zhang, W.; Wu, Y.; Yang, J.; Yao, T., *Nature Catalysis* **2019**, 2 (2), 134-141.
- Qi, K.; Cui, X.; Gu, L.; Yu, S.; Fan, X.; Luo, M.; Xu, S.; Li, N.; Zheng, L.; Zhang, Q., *Nature communications* **2019**, 10 (1), 1-9.
- Zhang, H.; Yu, L.; Chen, T.; Zhou, W.; Lou, X. W., *Advanced Functional Materials* 2018, 28 (51), 1807086.
- Chen, W.; Pei, J.; He, C. T.; Wan, J.; Ren, H.; Wang, Y.; Dong, J.; Wu, K.; Cheong, W. C.; Mao, J., *Advanced Materials* 2018, 30 (30), 1800396.
- Fang, S.; Zhu, X.; Liu, X.; Gu, J.; Liu, W.; Wang, D.; Zhang, W.; Lin, Y.; Lu, J.; Wei, S., *Nature communications* 2020, 11 (1), 1-8.
- 22. He, Q.; Tian, D.; Jiang, H.; Cao, D.; Wei, S.; Liu, D.; Song, P.; Lin, Y.; Song, L., *Advanced Materials* **2020**, 32 (11), 1906972.
- Zhu, J.; Cai, L.; Yin, X.; Wang, Z.; Zhang, L.; Ma, H.; Ke, Y.; Du, Y.; Xi, S.; Wee, A. T., ACS nano 2020, 14 (5), 5600-5608.
- 24. Yu, J.; Wang, A.; Yu, W.; Liu, X.; Li, X.; Liu, H.; Hu, Y.; Wu, Y.; Zhou, W., *Applied Catalysis B: Environmental* **2020**, 277, 119236.

- Hossain, M. D.; Liu, Z.; Zhuang, M.; Yan, X.; Xu, G. L.; Gadre, C. A.; Tyagi, A.; Abidi, I. H.; Sun, C. J.; Wong, H., *Advanced Energy Materials* 2019, 9 (10), 1803689.
- 26. Yi, J.-D.; Xu, R.; Chai, G.-L.; Zhang, T.; Zang, K.; Nan, B.; Lin, H.; Liang, Y.-L.; Lv, J.; Luo, J., *Journal of Materials Chemistry A* **2019**, 7 (3), 1252-1259.
- 27. Liang, H.-W.; Brüller, S.; Dong, R.; Zhang, J.; Feng, X.; Müllen, K., *Nature communications* 2015, 6 (1), 1-8.
- Zhang, X.; Liu, W.-X.; Zhou, Y.-W.; Meng, Z.-D.; Luo, L.; Liu, S.-Q., Journal of Electroanalytical Chemistry 2021, 894, 115359.