Coupling Core-Shelled Bi@Void@TiO₂ Heterostructures into Carbon Nanofibers for Achieving Fast Potassium Storage and Long Cycling Stability

Zongying Gao, Liang Han, Hui Gao, Jingwei Chen,* Zining Sun, Chunliu Zhu, Yafei Zhang, Jing Shi, Shougang Chen,* Huanlei Wang*

College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China

* Corresponding author. E-mail: <u>chenjingwei@ouc.edu.cn</u>; <u>sgchen@ouc.edu.cn</u>;

huanleiwang@gmail.com

Computational Methods: We used the first principle calculation method based on density functional theory (DFT) to optimize the structure and calculate the properties of Bi, TiO₂ and Bi/TiO₂ heterostructures. The CASTEP software package of DFT was used to calculate the structure, using the generalized-gradient approximation perdew-burke-ernzerhof (GGA-PBE) exchange correlation functional, and the interaction between atoms was simulated by the super soft pseudopotential method. The CASTEP software package requires that the calculation system must be periodic, and the calculation requires that there should be a large enough vacuum layer in our structure to accurately judge the energy level at the vacuum and eliminate the influence of interlayer interaction, thereby a vacuum layer was added as needed. We constructed Bi, TiO₂ and Bi/TiO₂ heterojunction models, and added a vacuum layer in the Z direction. Broyden-fletcher-goldfarb-shanno (BFGS) optimization algorithm is used for geometric optimization. The atomic energy convergence criterion is 2.0×10^{-6} eV, the convergence standard of atomic interaction force is 0.05 eV, the stress convergence standard is 0.1 GPa, and the convergence standard of atomic maximum displacement is 2.0×10^{-3} Å, the truncation energy was set as 300 eV, and the k-point of brillouin zone generated by gamma method was set as $2 \times 2 \times 2$ to meet the geometric relationship of reciprocal space.

Figure. S1. SEM images of (a) Bi, and (b) Bi@SiO₂.

Figure. S2. SEM images of (a) Bi@Void⊂CNF, (b) Void@TiO₂⊂CNF, and (c) pure carbon.

Figure. S3. CV curves of (a) Bi@Void⊂CNF, and (b) Void@TiO₂⊂CNF at the scan rate of 0.1 $mV s^{-1}$.

Figure. S4. Ex-situ high-resolution TEM images for Bi@Void@TiO₂⊂CNF anodes: a) after discharge to 0.8 V, b) after discharge to 0.3 V, and (c) after discharge to 0.01 V.

Figure. S5. Galvanostatic charge-discharge profiles at 0.05 A g⁻¹ of (a) Bi@Void@TiO₂⊂CNF, (b) Bi@Void⊂CNF, and (c) Void@TiO₂⊂CNF.

Figure. S6. SEM images of Bi@Void@TiO₂ \subset CNF after 1000 cycles at 2 A g⁻¹.

Figure. S7. TEM and high-resolution TEM images of Bi@Void@TiO₂ \subset CNF after 1000 cycles at 2 A g^{-1} .

Figure. S8. a, b) SEM images of (Bi@Void@TiO₂)1.2⊂CNF.

Figure. S9. a) Nitrogen adsorption-desorption isotherms, and (b) pore size distributions of (Bi@Void@TiO₂)1.2⊂CNF, and Bi@Void@TiO₂⊂CNF.

Figure. S10. a) Rate performance and (b) cycling performance of Bi@Void@TiO₂ \subset CNF and (Bi@Void@TiO₂)1.2 \subset CNF at 2 A g⁻¹.

Figure. S11. SEM images of (a) Bi@Void@TiO₂(0.5)⊂CNF and (b) Bi@Void@TiO₂(1.5)⊂CNF.

Figure. S12. Electrochemical performance of Bi@Void@TiO₂⊂CNF, Bi@Void@TiO₂(0.5)⊂CNF *and* Bi@Void@TiO₂(1.5)⊂CNF. a) Rate performance and (b) cycling performance at 2 A g⁻¹.

Figure. S13. SEM images of (a) Bi@Void(8)@TiO₂⊂CNF and (b) Bi@Void(12)@TiO₂⊂CNF.

Figure. S14. Electrochemical performance of Bi@Void(8)@TiO₂⊂CNF, Bi@Void@TiO₂⊂CNF and Bi@Void(12)@TiO₂⊂CNF. a) Rate performance and (b) cycling performance at 2 A g⁻¹.

Figure. S15. CV curves of (a) Bi@Void⊂CNF, and (b) Void@TiO₂⊂CNF at the different scan rates.

Figure. S16. *b* values of peak current: (a) Bi@Void⊂CNF, and (b) Void@TiO₂⊂CNF.

Figure. S17. Capacitive storage contribution (shade area) of (a) Bi@Void@TiO₂ \subset CNF, (b) Bi@Void \subset CNF, and (c) Void@TiO₂ \subset CNF at a scan rate of 1 mV s⁻¹.

Figure. S18. Electrostatic potential drop diagram of (a) Bi homogeneous junction, and (b) TiO₂ homogeneous junction.

Figure. S19. Side view of an interlayer differential charge density diagram for a Bi/TiO₂ heterostructure.

Figure. S20. a) Galvanostatic charge-discharge profiles at 0.05 A g⁻¹, and (b) rate cycling behavior of PTCDA@450 °C.

Figure. S21. Galvanostatic charge-discharge profiles at 0.2 A g⁻¹ of Bi@Void@TiO2⊂CNF based K-ion full cell.

Sample	S_{BET}^{a} (m ² g ⁻¹)	V_t^b (cm ³ g ⁻¹)	Pore vol (%)	
1			V _{0-2 nm}	$V_{\geq 2 nm}$
Bi@Void@TiO₂⊂CNF	215.53	0.46	24.96	75.04
Bi@Void⊂CNF	18.76	0.08	0.16	99.84
Void@TiO₂⊂CNF	171.69	0.58	0	100

Table. S1. Physical and electrochemical properties of $Bi@Void@TiO_2 \subset CNF$, $Bi@Void \subset CNF$ and $Void@TiO_2 \subset CNF$ samples.

^a Specific surface area was calculated by the Brunauer-Emmett-Teller (BET) method.

^b Total pore volume was determined by the density functional theory (DFT) method.

	Current	Cycle	Capacity	Rate	
Anode	density	Number	$(mAh g^{-1})$	$(mAh g^{-1}/A g^{-1})$	Referenc
	$(A g^{-1})$	(n)			es
G-TiO ₂ NTs	0.5	2000	160	129/5	1
HeTiO ₂ eC MTs	0.5	1200	133	97/2	2
TiO ₂ /C	0.05	1000	259	150/1	3
TiO ₂ /RGO	1	1000	85	107/1	4
Bi/rGO	0.05	200	100	235/0.5	5
Bi@3DGFs	1	400	164	113/5	6
BiND/G	5	500	213	200/10	7
Bi@C-1000	0.5	300	179	186/1.5	8
BiSb@C	0.5	600	320	152/2	9
Sb@CNFs	1	1000	227	121/2	10
SnSb@NC	0.5	200	185	116/2	11
Sb/CNS	0.2	600	247	101/2	12
Sb _{0.5} Bi _{0.5} @C	0.5	400	226	190/2	13
Sn/NPC	0.05	200	198	22/2	14
This work	2	3000	171	65/10	-

Table. S2. Electrochemical performance of alloy-based anodes for PIBs.

References

- 1 J. Cai, R. Cai, Z. Sun, X. Wang, N. Wei, F. Xu, Y. Shao, P. Gao, S. Dou and J. Sun, Nano-Micro Lett., 2020, 12, 123.
- 2 Y. Li, C. Yang, F. Zheng, Q. Pan, Y. Liu, G. Wang, T. Liu, J. Hu and M. Liu, *Nano Energy*, 2019, **59**, 582–590.
- 3 D. Su, Y. Pei, L. Liu, Z. Liu, J. Liu, M. Yang, J. Wen, J. Dai, H. Deng and G. Cao, *Nano-Micro Lett.*, 2021, **13**, 107.
- 4 Y. Fang, R. Hu, B. Liu, Y. Zhang, K. Zhu, J. Yan, K. Ye, K. Cheng, G. Wang and D. Cao, *J. Mater. Chem. A*, 2019, **7**, 5363–5372.
- 5 Q. Zhang, J. Mao, W. K. Pang, T. Zheng, V. Sencadas, Y. Chen, Y. Liu and Z. Guo, *Adv. Energy Mater.*, 2018, **8**, 1703288.
- 6 X. Cheng, D. Li, Y. Wu, R. Xu and Y. Yu, J. Mater. Chem. A, 2019, 7, 4913–4921.
- 7 Y. Zhao, X. Ren, Z. Xing, D. Zhu, W. Tian, C. Guan, Y. Yang, W. Qin, J. Wang, L. Zhang, Y. Huang, W. Wen, X. Li and R. Tai, *Small*, 2020, **16**, 1905789.
- 8 X. Xiang, D. Liu, X. Zhu, K. Fang, K. Zhou, H. Tang, Z. Xie, J. Li, H. Zheng and D. Qu, *Appl. Surf. Sci.*, 2020, **514**, 145947.
- 9 P. Xiong, J. Wu, M. Zhou and Y. Xu, ACS Nano, 2020, 14, 1018–1026.
- 10H. Huang, J. Wang, X. Yang, R. Hu, J. Liu, L. Zhang and M. Zhu, *Angew. Chem. Int. Ed.*, 2020, **132**, 14612–14618.
- 11Z. Wang, K. Dong, D. Wang, S. Luo, Y. Liu, Q. Wang, Y. Zhang, A. Hao, C. Shi and N. Zhao, *J. Mater. Chem. A*, 2019, **7**, 14309–14318.
- 12 Y. Han, T. Li, Y. Li, J. Tian, Z. Yi, N. Lin and Y. Qian, *Energy Storage Mater.*, 2019, **20**, 46–54.
- 13 X.-D. He, J.-Y. Liao, S. Wang, J.-R. Wang, Z.-H. Liu, X. Ding, Q. Hu, Z.-Y. Wen and C.-H. Chen, *J. Mater. Chem. A*, 2019, **7**, 27041–27047.
- 14Y. Yang, D. Li, J. Zhang, G. Suo, Q. Yu, L. Feng, X. Hou, X. Ye, L. Zhang and W. Wang, *Mater. Lett.*, 2019, 256, 126613.