Electronic Supplementary Information

A novel lithium-impregnated hollow MOF-based electrolyte realizing an optimum balance between ionic conductivity and the transference number in solid-like batteries

Fencheng Tao, Li Tian, Zixin Liu, Ruixue Cui, Meiying Liu, Xiaomin Kang* and Zhiliang Liu* College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China. E-mail: kangxm@imu.edu.cn and cezlliu@imu.edu.cn; Fax: +86-471-4992261; Tel: +86-471-4992261.

Contents

Figure S1. PXRD patterns of the synthesized hollow mesopores HM-MIL.

- Figure S2. The PXRD patterns of the synthesized LiNO₃@HM-MIL, LiBF₄@HM-MIL, LiCl@HM-MIL, LiClO₄@HM-MIL and LiTFSI@HM-MIL.
- Figure S3. The BET and pore size distribution of the synthesized hollow mesoporous HM-MIL.

Figure S4. The TGA curves of synthesized hollow mesoporous HM-MIL.

- Figure S5. EIS of the S-MIL-Cr electrolyte and hollow mesoporous HM-MIL electrolyte.
- Figure S6. The PXRD patterns of the synthesized S-MIL-Cr.
- Figure S7. Photograph of the LiNO₃@HM-MIL electrolyte membrane.
- Figure S8. The EIS of the synthesized LiBF₄@HM-MIL, LiCl@HM-MIL, LiClO₄@HM-MIL, LiTFSI@HM-MIL and LiBF₄@HM-MIL.
- Figure S9. (a) The X-ray photoelectron spectra (XPS) of the LiNO₃@HM-MIL after the activation treatment by LiPF₆; (b) The XPS of LiNO₃@HM-MIL after the treatment of argon etching about one minute.
- Figure S10. The current-time curve of solid-like electrolyte S-MIL-Cr during the polarization process (inside is the corresponding EIS before and after polarization).
- **Figure S11.** Photographs of LiNO₃@HM-MIL electrolyte membrane after 1 h storage at various temperature stages in an electric blow dryer atmosphere.
- Figure S12. The LSV curves of SS|S-MIL-Cr electrolyte|Li battery.
- Figure S13. The PXRD patterns of the synthesized Al-doped solid bimetals S-MIL.
- Figure S14. The SEM-EDX of the synthesized Al-doped solid bimetals S-MIL.
- Figure S15. HAADF-STEM images of the synthesized Al-doped solid bimetals S-MIL.
- Figure S16. EIS of the synthesized Al-doped solid bimetals S-MIL.

Figure S17. The current-time curve of the S-MIL solid-like electrolyte during the

polarization process (inside is the corresponding EIS before and after polarization).

- Figure S18. The LSV curves of SS|S-MIL solid-like electrolyte|Li battery.
- Figure S19. The XPS spectra of N 1s for LiNO₃@HM-MIL electrolyte after lithium plating/stripping cycles.
- Figure S20. The galvanostatic charge and discharge cycling of LiFePO₄|LiNO₃@HM-MIL electrolyte|Li battery.
- **Figure S21.** PXRD patterns of the LiNO₃@HM-MIL solid-like electrolyte before and after galvanostatic charge and discharge cycling.
- Figure S22. The galvanostatic charge and discharge cycling of LiFePO₄|S-MIL-Cr electrolyte|Li battery.
- Table S1. The ionic conductivity and ICP results for HM-MIL after immersing different lithium salt solutions.
- Table S2. Summary of ionic conductivity for MOFs-based solid-state electrolytes at different temperature ranges.
- Table S3. Summary of conductivity and transference number of different MOFs-based solid-state electrolytes.
- Table S4.
 Summary of cycle performance of different MOFs-based solid-state electrolytes.

References

Figure S1. PXRD patterns of the synthesized hollow mesopores HM-MIL match well with that of simulated ones.

Figure S2. The PXRD patterns of the synthesized LiNO₃@HM-MIL, LiBF₄@HM-MIL, LiCl@HM-MIL, LiClO₄@HM-MIL and LiTFSI@HM-MIL.

Figure S3. (a) The BET of the synthesized hollow mesoporous HM-MIL; (b) Pore size distribution of the synthesized hollow mesoporous HM-MIL.

Figure S4. The TGA curves of synthesized hollow mesoporous HM-MIL.

Figure S5. EIS of the S-MIL-Cr electrolyte and hollow mesoporous HM-MIL electrolyte (25 °C), and the internal shows a magnified view of the high frequency area.

Figure S6. The PXRD patterns of the synthesized solid S-MIL-Cr.

Figure S7. (a) Photograph of the LiNO₃@HM-MIL electrolyte membrane; (b-d) Flexible electrolyte membranes of LiNO₃@HM-MIL under different bending degrees.

Figure S8. The EIS of the synthesized $LiBF_4@HM-MIL$, LiCl@HM-MIL, LiCl@HM-MIL, $LiClO_4@HM-MIL$, LiTFSI@HM-MIL and $LiBF_4@HM-MIL$ at 25 °C (the internal shows a magnified view of the high frequency area).

NO.	Materials	σ (S cm ⁻¹)	Lithium content (wt%)
1	LiNO3@HM-MIL	1.24×10 ⁻³	12
2	LiTFSI@HM-MIL	9.36×10-4	11.2
3	LiClO ₄ @HM-MIL	7.90×10 ⁻⁴	0.001
4	LiCl@HM-MIL	7.54×10 ⁻⁴	0.013
5	LiBF ₄ @HM-MIL	5.17×10-4	1.01

Table S1. The ionic conductivity and ICP results for HM-MIL after immersing different lithium salt solutions.

Figure S9. (a) The X-ray photoelectron spectra (XPS) of the $LiNO_3@HM-MIL$ after the activation treatment by $LiPF_6$; (b) The XPS of $LiNO_3@HM-MIL$ after the treatment of argon etching about one minute.

NO.	Materials	Temperature Range	σ (S cm ⁻¹)	Ref	
1	LCZ	20 80°C	1.61×10 ⁻⁴ (30°C)	<u>S1</u>	
	LOZ	30-80 C	5.26×10 ⁻⁴ (80°C)	51	
2	LCMOF-1/PVDF-	-20-80°C	6.7×10 ⁻⁴ (30°C)	\$2	
2	HFP/Li-IL	-20-80 C	5.01×10 ⁻⁴ (80°C)	52	
	UiO-66-LiSS	25-90°C	6.0×10 ⁻⁵ (25°C)		
3			7.90×10 ⁻⁵ (80°C)	S3	
			1.10×10 ⁻⁴ (90°C)		
4	MOF-688	-40-60°C	3.40×10 ⁻⁴ (20°C)	S4	
			4.60×10 ⁻⁴ (30°C)		
5	UiOLiTFSI	25-70°C	2.07×10 ⁻⁴ (25°C)	\$5	
			1.39×10 ⁻³ (70°C)	33	
6	ZIF-67@ZIF-8	20.100°C	3.44×10 ⁻⁴ (-20°C)	S6	
		-20-100 C	4.98×10⁻³ (100°C)		
7	Li-IL@MOF	20, 10000	2.20×10 ⁻⁵ (-20°C)	\$7	
		-20-100°C	4.90×10 ⁻³ (100°C)	5/	
0	LiNO3@HM-MIL	20.12090	6.46×10 ⁻⁴ (20°C)	This	
ð		20-120°C	5.06×10 ⁻³ (120°C)	work	

Table S2. Summary of ionic conductivity for MOFs-based solid-state electrolytes at different temperature ranges.

Figure S10. The current-time curve of solid-like electrolyte S-MIL-Cr during the polarization process (inside is the corresponding EIS before and after polarization).

Table S3. Summary of conductivity	and transference num	nber of different N	MOFs-based
solid-state electrolytes.			

NO.	Materials	σ (S cm ⁻¹)	t_{Li}^{+}	Ref
1	CSIL	2.1×10 ⁻³	0.63	S8
2	ZIF-67@ZIF-8	1.35×10 ⁻³	0.82	S6
3	LiNO ₃ @HM-MIL	1.24×10 ⁻³	0.86	This work
4	LCMOF-1/PVDF-HFP/Li-IL	1.06×10 ⁻³	0.36	S2
5	Zr-BPDC-2SO ₃ H	7.88×10-4	0.88	S9
6	ZIF-8-SN-FEC	7.04×10 ⁻⁴	0.68	S10
7	UiO-66-LiSS-50 wt% PC/EC	7.80×10-4	0.88	S3
8	MIT-20-LiBF ₄	4.8×10 ⁻⁴	-	S11
9	MOF-688	3.4×10 ⁻⁴	0.87	S4

10	UiO-66 (SLE-H)	3.3×10 ⁻⁴	0.25	S12
11	$0.35 LiO^i Pr + 0.25 LiBF_4$	3.1×10 ⁻⁴	-	S13
12	Li-IL@MOF	3.0×10-4	0.36	S7
13	UiOLiTFSI	2.07×10-4	0.84	S5
14	LGZ	1.61×10-4	-	S1
15	PEO/ZIF-90-g-IL	1.17×10 ⁻⁴	0.44	S14

Figure S11. Photographs of LiNO₃@HM-MIL electrolyte membrane after 1 h storage at various temperature stages in an electric blow dryer atmosphere.

Figure S12. The LSV curves of SS|S-MIL-Cr electrolyte|Li battery.

Figure S13. The PXRD patterns of the synthesized Al-doped solid bimetals S-MIL.

Figure S14. The SEM-EDX of the synthesized Al-doped solid bimetals S-MIL.

Figure S15. HAADF-STEM images of the synthesized Al-doped solid bimetals S-MIL (a) with the corresponding EDX elements mappings (b) and (c).

Figure S16. EIS of the synthesized Al-doped solid bimetals S-MIL at 25°C (the internal shows a magnified view of the high frequency area).

Figure S17. The current-time curve of the S-MIL solid-like electrolyte during the polarization process (inside is the corresponding EIS before and after polarization).

Figure S18. The LSV curves of SS|S-MIL solid-like electrolyte|Li battery.

Figure S19. The XPS spectra of N 1s for LiNO₃@HM-MIL electrolyte after lithium plating/stripping cycles.

Figure S20. The galvanostatic charge and discharge cycling of LiFePO₄|LiNO₃@HM-MIL electrolyte|Li battery.

Figure S21. PXRD patterns of the hollow mesoporous LiNO₃@HM-MIL solid-like electrolyte before and after galvanostatic charge and discharge cycling.

Figure S22. (a) The galvanostatic charge and discharge cycling of LiFePO₄|S-MIL-Cr electrolyte|Li battery; (b) The LiFePO₄|S-MIL-Cr electrolyte|Li battery charge and discharge curves for the 1st, 10nd and 18th cycles; (c) The charge/discharge capacity and coulombic efficiency of the LiFePO₄|S-MIL-Cr electrolyte|Li battery.

 Table S4.
 Summary of cycle performance of different MOFs-based solid-state

 electrolytes.

NO.	Materials	current density	Initial discharge capacity/ mAh g ⁻¹	After cycle discharge capacity/mA h g ⁻¹	Capacity retention ratio/%	Ref
1	CSIL	0.2 C	-	158 (100 cycles)	99	S 8
2	ZIF-67@ZIF-8	0.1 C	116	103.3 (100 cycles)	89.1	S6
3	UiO-66-LiSS- 50wt%PC/EC	0.2 C	127	112 (100 cycles)	88.1	S3
4	LGZ	1.0 C	101.2	101.4 (500 cycles)	100	S1
5	Cu@Zn-MOF/PVA	1.0 C	119.3	135.3 (100 cycles)	-	S15
6	UiO-66 (SLE-H)	0.1 C	137	130 (100 cycles)	94.8	S12
7	Hollow ZIF-8	0.1 C	111.2	94.6 (100 cycles)	85.1	S16
8	PEO-n-UIO/60°C	0.1 C	151	141 (100 cycles)	95	S17
9	UIO/Li-IL/60°C	0.2 C	130.2	130.4 (100 cycles)	100	C19
		1.0 C	119	112 (380 cycles)	94	518
10	MOF-688	30mA/g	125	120 (200 cycles)	96	S4
11	LiNO ₃ @HM-MIL	0.1 C	131.96	128.56 (200 cycles)	97.42	This work

References

- G. Jiang, C. Qu, F. Xu, E. Zhang, Q. Lu, X. Cai, S. Hausdorf, H. Wang and S. Kaskel, *Adv. Funct. Mater.*, 2021, **31**, 2104300.
- Q. Zhang, D. Li, J. Wang, S. Guo, W. Zhang, D. Chen, Q. Li, X. Rui, L. Gan and S. Huang, *Nanoscale*, 2020, 12, 6976-6982.
- H. Yang, B. Liu, J. Bright, S. Kasani, J. Yang, X. Zhang and N. Wu, ACS Appl. Energy Mater., 2020, 3, 4007-4013.
- W. Xu, X. Pei, C. S. Diercks, H. Lyu, Z. Ji and O. M. Yaghi, J. Am. Chem. Soc., 2019, 141, 17522-17526.
- F. Zhu, H. Bao, X. Wu, Y. Tao, C. Qin, Z. Su, Z. Kang, ACS Appl. Mater. Interfaces, 2019, 11, 43206-43213.
- Z. Liu, P. Liu, L. Tian, J. Xiao, R. Cui and Z. Liu, *Chem. Commun.*, 2020, 56, 14629-14632.
- Z. Wang, R. Tan, H. Wang, L. Yang, J. Hu, H. Chen and F. Pan, *Adv. Mater.*, 2018, 30, 1704436.
- 8. A. E. Abdelmaoula, J. Shu, Y. Cheng, L. Xu, G. Zhang, Y. Xia, M. Tahir, P. Wu and L. Mai, *Small Methods*, 2021, **5**, 2100508.
- Q. Zeng, J. Wang, X. Li, Y. Ouyang, W. He, D. Li, S. Guo, Y. Xiao, H. Deng, W. Gong, Q. Zhang and S. Huang, ACS Energy Lett., 2021, 6, 2434-2441.
- D. Han, P. Wang, P. Li, J. Shi, J. Liu, P. Chen, L. Zhai, L. Mi and Y. Fu, ACS Appl. Mater. Interfaces, 2021, 13, 52688-52696.
- S. S. Park, Y. Tulchinsky and M. Dinca, J. Am. Chem. Soc., 2017, 139, 13260-13263.
- K. Wang, L. Yang, Z. Wang, Y. Zhao, Z. Wang, L. Han, Y. Song and F. Pan, Chem. Commun., 2018, 54, 13060-13063.
- B. M. Wiers, M. L. Foo, N. P. Balsara and J. R. Long, J. Am. Chem. Soc., 2011, 133, 14522-14525.
- Z. Lei, J. Shen, J. Wang, Q. Qiu, G. Zhang, S. Chi, H. Xu, S. Li, W. Zhang, Y. Zhao, Y. Deng and C. Wang, *Chem. Eng. J.*, 2021, **412**, 128733.

- L. Fan, Z. Guo, Y. Zhang, X. Wu, C. Zhao, X. Sun, G. Yang, Y. Feng and N. Zhang, J. Mater. Chem. A, 2020, 8, 251-258.
- 16. L. Tian, Z. Liu, F. Tao, M. Liu and Z. Liu, *Dalton Trans.*, 2021, **50**, 13877-13882.
- 17. J. F. Wu and X. Guo, J. Mater. Chem. A, 2019, 7, 2653-2659.
- 18. J. F. Wu and X. Guo, Small, 2019, 15, 1804413.