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Fig. S1 TEM Bright field image of as-prepared AgPd aerogel.
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Fig. S2 CV curves of AgPd nanoalloys treated with different (a) time and (b) temperature during
oxidation. The electrolyte is 1.0 M KOH +1.0 M HCOOK and the scan rate is 50 mV s
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Fig. S3 SEM-EDS for (a) AgPd, (b) AgPd-Ag,0 and (c) AgPd-AgF interfaces, the inset shows

the atomic fractions for the elements.
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Fig. S4 The relative percentages of Ag/Pd for AgPd, AgPd-Ag,0 and AgPd-AgF interfaces.
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Fig. S5 CV curves of AgPd nanoalloys treated with different (a) time and (b) concentration of
ammonium fluoride solution during fluorination at 373K. The electrolyte is 1.0 M KOH +1.0 M
HCOOK and the scan rate is 50 mV s,
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Fig. S6 (a) XPS wide spectrum of AgPd-Ag,O and AgPd-AgF interfaces with refer to as-
prepared AgPd surface. (b) Enlarged spectrum of the green region in (a).



Fig. S7 Ab initio molecular dynamics (AIMD) simulations of oxidation and fluorination process
on AgPd(111) surface. (a, ¢) DFT relaxed structure of AgPd(111) surface with oxygen and
fluorine atoms coverage of 1.0 ML. (b, d) Surface structures after 5 ps relaxation of AIMD at
700 K for (a) and (c). The color of light-blue, dark-blue, red and orange are represent for Ag, Pd,

O and F atoms.
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Fig. S8 CV curves of AgPd-AgF interface in electrolyte of 1.0 M KOH and 1.0 M KOH + 1.0 M

HCOOK, where the scan rate is 50 mV s™!, the pink and blue arrows indicate the scan direction.
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Fig. S9 (a) CV curves and (b) ECSAs of AgPd-Ag,0 and AgPd-AgF interfaces with refer to as-
prepared AgPd and commercial Pd/C catalysts. (c) CV curves modified by ECSAs. (d) Cycling

stability of AgPd-Ag,O and AgPd-AgF interfaces with refer to as-prepared AgPd and

commercial Pd/C catalysts.
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Fig. S10 Cycling stability of AgPd-Ag,0O and AgPd-AgF interfaces with refer to as-prepared
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Table S1. A literature survey of the catalytic activity and stability of Ag-based and Pd-based

FOR catalysts.
Catalysts Mass Specific Scan rete Stability (after CA) Cycling Electrolyte Ref.
activity activity (mV s?) stability
(A mg™) (mA cm?)
AgPd-AgF 3.03 13.38 50 59.37% (0.968 A mg™") 74.8% after 1.0 M KOH+1.0 M This
after 1h 500 cycles HCOOK work
AgPd-Ag,0 2.54 16.23 50 28.21% (0.456 A mg™") 58.4% after 1.0 M KOH+1.0 M This
after 1h 500 cycles HCOOK work
Pd,3Co/C 2.5 NA 50 0.156 A mg! after NA 1.0 M KOH+1.0 M !
3000s HCOOK
PdH/C NA 0.1 20 31.67% after 1000s NA 1.0MKOH +0.1 M 2
HCOOK
Pd,Ag/C 0.04 NA 50 NA NA 1.0 M NaOH + 0.1 M 3
HCOONa
PdCu/C NA 35 30 0.182 mA cm? after NA 1.0 M KOH+1.0 M 4
0.5h HCOOK
CuPdAu/C 12 NA 50 0.355 A mg! after NA 0.5 M KOH+0.5 M 3
1000s HCOOK
PdNi/C 4.5 12.0 50 NA NA 1.0 M KOH+1.0 M 6
HCOOK
PdRh/C 4.5 8.1 50 0.408 A mg' after NA 1.0 M KOH+1.0 M 7
6000s HCOOK
Pd;,Ceys/C 1.1 19.4 50 NA 11% after 500 1.0 M KOH+1.0 M 8
cycles HCOOK
AgsPds /tGO 4.2 4.1 50 0.118 A mg! after 1h 49.1% after 1.0 M KOH+1.0 M o
500 cycles HCOOK
PdAu/Ni foam NA 0.8 50 NA NA 0.5 M NaOH + 0.1M 10
HCOONa
AgCuPd 2.7 10.1 50 NA 38.2% after 1.0 M KOH+1.0 M 1
500 cycles HCOOK
Pd;Au;Agi/CNT 4.5 14.3 50 29.3% after 1h 30% after 500 1.0 M KOH+1.0 M 12
cycles HCOOK
AgPdF 23 20.5 50 0.19 A mg! after 1h 54% after 600 1.0 M KOH+1.0 M 13
cycles HCOOK
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PdssAgzoRh;s/C 1.9 3.0 50 0.15 A mg! after 1h 74.2% after 1.0MKOH+ 1.0 M 14
1000 cycles HCOOK

Pd¢AgsRu/pCN 4.7 NA 50 0.7 A mg™! after 5400s NA 1.0OMKOH+1.0M 15
Ts HCOOK

PdAgIr NFs/C 44 6.5 50 27.3% after 4000s 41.5% after 1.OMKOH+1.0M 16
500 cycles HCOOK

AgPdPt 2.9 3.5 50 NA 96% after 500 0.5 M KOH+0.5 M 17
cycles HCOOK

Ag30PdgCo; H- 3.08 16.9 50 0.24 A-mg! after 1h 54.06% after 1.0MKOH+ 1.0 M 18
NSs 500 cycles HCOOK

janus- 1.3 7.4 50 NA 44.29% after 1.0OMKOH+1.0M 19
AgaoPdgoNizg 500 cycles HCOOK

Pt-Ag 0.83 NA 50 36% after 10000s NA I.OMKOH+1.0M 20
HCOOK

PdgpSn;¢/C 5.7 13.5 50 NA NA 1.0MKOH+1.0M 21
HCOOK

AgNi@PANI/Pt 0.15 NA 50 0.105 mA cm?2 after NA 0.2 M HySO4 +2.0 M 2
1200s HCOONa
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Fig. S11 (a, b) AgPd and (c, d) AgF(111) surfaces with the strain state of 0 and +3%, where the

dark blue, light blue and orange are represent for Pd, Ag and F atoms, respectively.
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Fig. S12 Kinetic barriers of primary and secondary routes on AgPd-AgF interface for the

formate oxidation reaction.
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AgPd AgPd-PdO AgPd-PdF,

Fig. S13 Front and top view of AgPd-PdO and AgPd-PdF, interfaces with refer to AgPd(111)

surface, in which the marked number represent the average Mulliken charge.
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Table S2. Lattice mismatch (A), average interlayer distance between the adlayers and AgPd

substrates, and binding energy per metal atom of interfaces between oxide (fluoride) adlayers

and AgPd substrates.
System A (%) d(A) Epina (€V atom!)
AgPd / 2.44 /
AgPd-PdO 8.53% 2.75 -1.37
AgPd-PdF, 0.74% 2.58 -1.20
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Fig. S14 (a) Partial density of state curves for AgPd-PdO and AgPd-PdF, interfaces with refer to

AgPd(111) surface, where the vertical line represent the d-band centers. (b-d) Adsorption

energies for HCOO, H and OH on the surface of AgPd-PdO and AgPd-PdF, interfaces with refer

to AgPd(111) surface. (c) Free energy diagram and (d) kinetic barriers on AgPd-PdO and AgPd-

PdF, interfaces with refer to AgPd(111) surface for the formate oxidation reaction.
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Fig. S15 Partial density of state curves for AgPd, AgF and AgPd-AgF with 0 and 3% of tensile

strain, where the vertical line represent the d-band centers.
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Fig. S16 The Free energy diagram of FOR on the surface of (a) AgPd(111), (b) AgF(111) with 0

and 3% of tensile strain. (c) The Free energy diagram of FOR on the surface of AgF(111) adlayer
with 0 and 3% of tensile strain on AgPd(111).
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