## Single-atom vanadium-doped 2D semiconductor platform for attomolar-level molecular sensing

Jihyung Seo,<sup>a</sup> Yongchul Kim,<sup>b</sup> Junghyun Lee,<sup>a</sup> Eunbin Son,<sup>a</sup> Min-Hyoung Jung,<sup>d</sup> Young-Min Kim,<sup>d</sup> Hu Young Jeong,<sup>\*c</sup> Geunsik Lee,<sup>\*b</sup> and Hyesung Park<sup>\*a</sup>

<sup>a</sup>Department of Materials Science and Engineering, Graduate School of Semiconductor Materials and Devices Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea

<sup>b</sup>Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea

<sup>c</sup>Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea

<sup>d</sup>Department of Energy Science, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea

\*Corresponding author

E-mail address: <u>hspark@unist.ac.kr</u>, <u>gslee@unist.ac.kr</u>, <u>hulex@unist.ac.kr</u>



Fig. S1 Temperature profiles and gas composition in the liquid precursor-based CVD of pristine  $ReSe_2$  and  $V_{SAD}ReSe_2$ .



**Fig. S2** (a) Two position types for the substitutional doping of vanadium atoms in the  $V_{SAD}ReSe_2$  lattice. (b) Atomic structure of  $V_{SAD}ReSe_2$  for position I. (c) Projected DOS of the vanadium atom and neighboring rhenium atoms in  $V_{SAD}ReSe_2$  (position I). (d) Atomic structure of  $V_{SAD}ReSe_2$  for position II. (e) Projected DOS of the vanadium atom and neighboring rhenium atoms in  $V_{SAD}ReSe_2$  for position II. (e) Projected DOS of the vanadium atom and neighboring rhenium atoms in  $V_{SAD}ReSe_2$  for position II. (b) Projected DOS of the vanadium atom and neighboring rhenium atoms in  $V_{SAD}ReSe_2$  (position II).



Fig. S3 AFM images of pristine  $ReSe_2$  and  $V_{SAD}ReSe_2$  synthesized by liquid precursor-assisted CVD (scale bars: 4  $\mu$ m).



Fig. S4 Raman spectra of pristine  $ReSe_2$  and  $V_{SAD}ReSe_2$  synthesized by liquid precursorassisted CVD.



Fig. S5 XPS spectra of V 2p obtained from pristine  $ReSe_2$  and  $V_{SAD}ReSe_2$ .

| HAADF              | Re          | Se          | V           |
|--------------------|-------------|-------------|-------------|
| a fail of the Part |             |             |             |
|                    |             |             |             |
| No X4              |             |             |             |
| All Ard B. Caller  |             |             |             |
|                    |             |             |             |
|                    |             |             | 4           |
| <u>1 µm</u>        | <u>1 µm</u> | <u>1 µm</u> | <u>1 µm</u> |

Fig. S6 EDS mapping image of pristine  $ReSe_2$  for Re, Se, and V.



Fig. S7 Doping concentration of  $V_{SAD}ReSe_2$  synthesized with different vanadium precursor concentrations.



**Fig. S8** SERS profiles for  $10^{-4}$  M of R6G on the as-synthesized V<sub>SAD</sub>ReSe<sub>2</sub> with different precursor ratios (APR:AMV=100 mM : X mM, X = 2, 4, and, 8).



Fig. S9 Raman-signal intensity of R6G molecules on  $V_{SAD}ReSe_2$  at 614 cm<sup>-1</sup> for 20 different regions in the samples shown in Fig. 4d.



Fig. S10 Raman-signal intensity of R6G molecules on  $V_{SAD}ReSe_2$  at 614 cm<sup>-1</sup> measured for up to 30 days.



**Fig. S11** HOMO-LUMO energy levels and molecular structures of (a) rhodamine B, (b) crystal violet, and (c) methylene blue.

| Raman peak             | Peak assignment                         |  |  |
|------------------------|-----------------------------------------|--|--|
| $614 \text{ cm}^{-1}$  | C-C-C ring in-plane bending             |  |  |
| 776 cm <sup>-1</sup>   | C-H out-of-plane bending                |  |  |
| 1131 cm <sup>-1</sup>  | C-H in-plane bending                    |  |  |
| 1185 cm <sup>-1</sup>  | C-C stretching vibration bending        |  |  |
| $1312 \text{ cm}^{-1}$ | Aromatic C-C stretching                 |  |  |
| 1363 cm <sup>-1</sup>  | Aromatic C-C stretching                 |  |  |
| $1419 \text{ cm}^{-1}$ | Aromatic C-C stretching / C-H vibration |  |  |
| 1506 cm <sup>-1</sup>  | Aromatic C-C stretching                 |  |  |
| $1532 \text{ cm}^{-1}$ | Aromatic C-C stretching                 |  |  |
| 1575 cm <sup>-1</sup>  | Aromatic C-C stretching                 |  |  |
| $1601 \text{ cm}^{-1}$ | Aromatic C-C stretching / C-H vibration |  |  |
| $1650 \text{ cm}^{-1}$ | Aromatic C-C stretching                 |  |  |

 Table S1 Raman peaks and peak assignments of the R6G molecule.

| SERS substrate                                     | Synthesis method                                             | Probe<br>molecule | LOD                                | Excitation<br>wavelength | Reference |
|----------------------------------------------------|--------------------------------------------------------------|-------------------|------------------------------------|--------------------------|-----------|
| Oxygen-<br>substituted MoS <sub>2</sub>            | Hydrothermal synthesis                                       | R6G               | $1 \times 10^{-7} \mathrm{M}$      | 532 nm                   | 1         |
| Mildly reduced<br>GO                               | Modified<br>Hummers' method                                  | RhB               | $5 \times 10^{-8} \mathrm{M}$      | 514 nm                   | 2         |
| 1T-MoSe <sub>2</sub><br>( <i>n</i> -butyl lithium) | Chemical exfoliation                                         | R6G               | $1 \times 10^{-8} \mathrm{M}$      | 532 nm                   | 3         |
| 1T-MoS <sub>2</sub> (NaK)                          | Chemical exfoliation                                         | CV                | $1 \times 10^{-8} \mathrm{M}$      | 532 nm                   | 4         |
| $ReS_2$                                            | CVD                                                          | R6G, MB           | $1 \times 10^{-9} \mathrm{M}$      | 532, 633 nm              | 5         |
| MoS <sub>2</sub> QD/rGO                            | Solvothermal<br>method/Modified<br>Hummers' method           | R6G               | 1 × 10 <sup>-9</sup> M             | 532 nm                   | 6         |
| AuNPs/MoS <sub>2</sub>                             | CVD                                                          | RhB               | $1 \times 10^{-10} \mathrm{M}$     | 532 nm                   | 7         |
| N-doped graphene                                   | CVD                                                          | RhB               | $1 \times 10^{-11} \mathrm{M}$     | 514 nm                   | 8         |
| $1T'-W(Mo)Te_2$                                    | CVD                                                          | R6G               | $4(40) \times 10^{-14} \mathrm{M}$ | 532 nm                   | 9         |
| NbS <sub>2</sub>                                   | CVD                                                          | MeB               | $1 \times 10^{-14} \mathrm{M}$     | 532 nm                   | 10        |
| Graphene/ReO <sub>x</sub> S <sub>y</sub>           | CVD                                                          | R6G               | $1 \times 10^{-15} \mathrm{M}$     | 532 nm                   | 11        |
| Ti <sub>2</sub> N                                  | Selective etching<br>of Al from Ti <sub>2</sub> AlN<br>(MAX) | R6G               | $1 \times 10^{-15} \mathrm{M}$     | 532 nm                   | 12        |
| V <sub>SAD</sub> ReSe <sub>2</sub>                 | CVD                                                          | R6G               | $1 \times 10^{-18} \mathrm{M}$     | 532 nm                   | This work |

 Table S2 Summary of the SERS performance for 2D material-based SERS substrates reported

 in literature.

## References

- Z. Zheng, S. Cong, W. Gong, J. Xuan, G. Li, W. Lu, F. Geng, Z. Zhao, *Nat. Commun.* 2017, 8, 1993.
- 2 X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, J. G. Hou, *ACS Nano* **2011**, 5, 952–958.
- 3 Y. Yin, P. Miao, Y. Zhang, J. Han, X. Zhang, Y. Gong, L. Gu, C. Xu, T. Yao, P. Xu, Y. Wang,
  B. Song, S. Jin, *Adv. Funct. Mater.* 2017, 27, 1606694.
- 4 E. Er, H.-L. Hou, A. Criado, J. Langer, M. Moller, N. Erk, L. M. Liz-Marzan, M. Prato, *Chem. Mater.* **2019**, 31, 5725–5734.
- 5 P. Miao, J.-K. Qin, Y. Shen, H. Su, J. Dai, B. Song, Y. Du, M. Sun, W. Zhang, H.-L. Wang,
   C.-Y. Xu, P. Xu, *Small* 2018, 14, 1704079.
- 6 D. Wu, J. Chen, Y. Ruan, K. Sun, K. Zhang, W. Xie, F. Xie, X. Zhao, X. Wang, *J. Mater. Chem. C* **2018**, 6, 12547–12554.
- 7 R. Rani, A. Yoshimura, S. Das, M. R. Sahoo, A. Kundu, K. K. Sahu, V. Meunier, S. K. Nayak, N. Koratkar, K. S. Hazra, *ACS Nano* **2020**, 14, 6258–6268.
- 8 S. Feng, M. C. dos Santos, B. R. Carvalho, R. Lv, Q. Li, K. Fujisawa, A. L. Elias, Y. Lei, N. Perea-Lopez, M. Endo, M. Pan, M. A. Pimenta, M. Terrones, *Sci. Adv.* 2016, 2, e1600322.
- 9 L. Tao, K. Chen, Z. Chen, C. Cong, C. Qiu, J. Chen, X. Wang, H. Chen, T. Yu, W. Xie, S. Deng, J.-B. Xu, *J. Am. Chem. Soc.* **2018**, 140, 8696–8704.
- 10X. Song, Y. Wang, F. Zhao, Q. Li, H. Q. Ta, M. H. Rummeli, C. G. Tully, Z. Li, W.-J. Yin, L. Yang, K.-B. Lee, J. Yang, I. Bozkurt, S. Liu, W. Zhang, M. Chhowalla, ACS Nano 2019, 13, 8312–8319.
- 11J. Seo, J. Lee, Y. Kim, D. Koo, G. Lee, H. Park, *Nano Lett.* **2020**, 20, 1620–1630.
- 12B. Soundiraraju, B. K. Geroge, *ACS Nano* **2017**, 11, 8892–8900.