Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supporting Information for

Type-II Weyl fermion induced hydrogen adsorption in two-dimensional electride

$[Ca_2N]^+ \cdot e^-$

Zeqing He, ^{1,2#} Weizhen Meng^{1,2#}, Ying Liu^{1,2*}, Xiaoming Zhang^{1,2}, and Guodong Liu^{1,2*}

¹School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.

²State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China.

[#]*He and Meng are equal contribution in this work*

* E-mail of corresponding author: ying_liu@hebut.edu.cn; gdliu1978@126.com

Sec. A The absorption energy of bulk Ca₂N

In this section, we calculate the hydrogen adsorption energy for the bulk of the electride Ca_2N in Fig. S1. One could easily derive that the hydrogen adsorption energy eventually approaches -0.78 eV. This result is much smaller than that of monolayer Ca_2N (-0.97 eV). This result indirectly indicates the functions of the type-II Weyl point, it give rises to a positive influence on hydrogen adsorption process.

Fig. S1 Hydrogen adsorption energy of 1×1×1, 2×2×1, 3×3×1, 4×4×1 in bulk electride Ca₂N

Sec. B Electron localization function (ELF) with hole-doping

In this section, we calculate the electron localization function (ELF) of doping with 0~1 holes in electride Ca₂N in Fig. S2. We can find that the excess electrons are gradually neutralized with the doping of the hole. Then, we also calculate the electronic band structures of doping with 0-1 holes in electride Ca₂N in Fig. S3. With the increase of hole doping, Weyl fermions first approach and then move away from the Fermi level, where 0.4-holes are the critical point.

Fig. S2 The electron localization function (ELF) of doping with $0\sim1$ holes in electride Ca₂N, with the isosurface values set as 0.6.

Fig. S3 Electronic band structures with doping holes $(0\sim1)$ in electride Ca₂N. The red dashed line indicates the positions of the type-II Weyl point.

In this section, we calculate the electron localization function (ELF) under -6% $\sim 6\%$ strains in Fig. S4. We can find that the excess electrons always exist on both sides of Ca₂N. Then, we also calculate the electronic band structures under -6% $\sim 6\%$ strains in Fig. S5. The Weyl fermion is gradually approaching from the Fermi level under -6% $\sim 6\%$ strains.

Fig. S4 The electron localization function (ELF) under $-6\% \sim 6\%$ strains, with the isosurface values set as 0.6.

Fig. S5 The electronic band structure under $-6\% \sim 6\%$ strains. Among them, the red line indicates the positions of the type-II Weyl point.

Sec. C Dynamical stability of 2D Ca2N under biaxial strains and Electronic band structure under uniaxial strains

The phonon energy spectra of electride Ca₂N under different biaxial strains (-6% ~6 %) are calculated, as shown in Fig. S6. We plot phonon energy spectra are calculated under the $5\times5\times1$ supercell. One could observe that all phonon energy spectra have no virtual frequencies along the *k*-paths Γ -M-K- Γ . Therefore, the electride Ca₂N under biaxial strain (-6% ~6%) is dynamically stable.

Fig. S6 Phonon energy spectra of electride Ca₂N under different biaxial strains (-6% ~6 %).

We find that the uniaxial strain could destroy the Weyl point on the K- Γ path, resulting in a gap a, as shown in Fig. S7.

Fig. S7 The electronic band structure of uniaxial strain (-6 ~ 6%) in electride Ca₂N.

Sec. D Results for regulating strains under hole-doping

When we regulate strains under hole-doping, the positions of Weyl point gradually approach the Fermi level [Figs. S9-S14], and the hydrogen adsorption energy gradually increases, as shown in Fig. S8 (a-d) [See Table SI for specific values]. Therefore, these results indicate that the distance of the Weyl point from the Fermi level highly affects the hydrogen adsorption effect of Ca_2N .

Fig. S8 (a-d) The hydrogen adsorption energy of different strain (-6% ~ 6%) under holes-doping (0~1 eV) in electride Ca₂N. In (a-d), the insets show the distance of Weyl point from the Fermi level.

Fig. S9 The electronic band structures of different holes-doping under -6% strain.

Fig. S10 Electronic band structures of different holes-doping under -4% strain.

Fig. S11 Electronic band structures of different holes-doping under -2% strain.

Fig. S12 Electronic band structures of different holes-doping under +2% strain.

Fig. S13 Electronic band structures of different holes-doping under +4% strain.

Fig. S14 Electronic band structures of different holes-doping under +6% strain.

Table SI: Adsorption energy of different strains (-6% ~ +6%) under holes-doping (0.2 eV ~ 1.0 eV)

Но	les: 0.2 eV	Holes: 0.4 eV			Holes: 0.6 eV		
Strains							
-6	-0.87909		-6	-0.94529	-6	-0.7176	
-4	-0.92289		-4	-0.99629	-4	-0.7797	
-2	-0.97048		-2	-1.04573	-2	-0.83209	
0	-1.01957		0	-1.0977	0	-0.88715	
+2	-1.07132		+2	-1.13597	+2	-0.93902	
+4	-1.09769		+4	-1.18531	+4	-0.98492	
+6	-1.14764		+6	-1.23513	+6	-1.02445	

Holes: 0.8 eV		
-6	-0.47111	
-4	-0.54774	
-2	-0.60216	
0	-0.66574	
+2	-0.72326	
+4	-0.76761	
-6	-0.80474	

Sec. E Discussion of further adsorption of hydrogen atoms

The effect of the hydrogen adsorption in Ca₂NH is further discussed. First, when the hydrogen is adsorbed on the (001) surface of Ca₂N, the excess electrons are transferred to H on the surface, forming the conventional compound Ca₂NH, as shown in Fig. S15 (b,c). However, the electronic structure of Ca₂NH becomes the semiconductor, as shown in Fig. S15(a). In this case, we calculate the hydrogen adsorption energy of Ca₂NH, which is about -0.46191 eV. The results show that the hydrogen adsorption can still occur in Ca₂NH, which agree well with the results of Kitano et al. [Chem. Sci. 7, 4036 (2016)]. However, when hydrogen is further adsorbed on the (001) surface of Ca₂NH₂ compound, the adsorption energy is positive, indicating that no hydrogen adsorption occurs on Ca₂NH₂.

Fig. S15 The electronic structure of Ca_2NH . (b), (c) Indicates the crystal structure and ELF of Ca_2NH , respectively.