Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supporting Information:

Laser Synthesis of Amorphous CoS_x Nanospheres for Efficient Hydrogen Evolution and Nitrogen Reduction Reaction

Lili Zhao^{a#}, Bin Chang^{a,d#}, Tianjiao Dong^{a#}, Haifeng Yuan^a, Yue Li^a, Zhenfei Tang^a, Zhen Liu^a, Hong Liu^{a,b}, Xiaoli Zhang^c, Weijia Zhou^{a*}

a Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China

b State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P.

R. China

c School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China.

d State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China.

[#] These authors contributed equally to this work.

* Corresponding author. E-mail: ifc_zhouwj@ujn.edu.cn (W. Zhou)

Experimental section

Chemicals

All chemicals in this work were of analytical grade without further purification. Cobalt nitrate $(Co(NO_3)_2 \cdot 6H_2O)$, iron chloride hexahydrate $(FeCl_3 \cdot 6H_2O)$, 2aminoterephthalic acid (H₂BDC-NH₂), acetic acid, 2-Methylimidazole (C₄H₆N₂), thioacetamide (CH₃CSNH₂), absolute ethanol (C₂H₅OH), sulfuric acid (H₂SO₄), sodium sulphate $(Na_2SO_4),$ sodium hydroxide (NaOH), sodium citrate (Na₃C₆H₅O₇·2H₂O), sodium hypochlorite (NaClO), hydrogen peroxide (H₂O₂) and 20 wt.% Pt/C were purchased from Sinopharm Chemical Reagents Beijing Co., Ltd. in China. Salicylic acid ($C_7H_6O_3$), sodium nitroferricyanide ($C_5FeN_6Na_2O$), copper (II) acetate monohydrate, L-glutamic acid and 1,3,5-benzenetricarboxylic acid were purchased from Aladdin Chemical Reagent Co., Ltd., Shanghai. The carbon fiber cloth (CC) was purchased from CeTech Co., Ltd., China. Mixed gases of argon and hydrogen sulfide (H₂S-Ar, 10 vol% H₂S) and nitrogen (N₂) were obtained from Jinan Xuchao Gases CO., LTD.

Synthesis of CoS_x nanospheres anchored on carbon fiber cloths by laser under H_2S atmosphere

Carbon fiber cloths (CC) were firstly cleaned in 1 M H₂SO₄, ethanol and distilled water by ultrasonic treatment for 15 min, respectively. Then the oxygen plasma (ZEPTO ONE, Diener electronic) was applied to convert the carbon fiber cloths from hydrophobic to superhydrophilic. The Co-MOF (ZIF-67) was grown on carbon fiber cloths (denoted as Co-MOF/CC) as reported previously²⁰. Typically, 2-Methylimidazole (1.3 g) dissolved in 40 mL deionized water was poured into a 100 mL beaker containing 40 mL Co(NO₃)₂·6H₂O (0.58 g) solution and a CC (4 × 4 cm²), and then mixed together under continuous vigorous stirring for 10 min. The final purple solution and Co-MOF/CC were obtained by keeping this mixed solution at room temperature for 24 h without interrupt. Finally, the as-prepared Co-MOF/CC was washed with deionized water for three times and dried at 80 °C overnight.

A laser synthesis was adopted to prepare CoS_x nanospheres anchored on CC

(denoted as CoS_x/CC-L) under H₂S atmosphere. Firstly, the above obtained Co-MOF/CC was placed in the bottom of a sealed chamber with a light transmittable quartz window. In a typical laser process, the exposed H₂S/Ar atmosphere was maintained during the laser-scribing process. The central wavelength, repetition rate and maximum (100%) power of the laser pulse were 1064 nm, 20 kHz and 20 W, respectively. Unless stated differently, the $CoS_x/CC-L$ sample discussed in the main text was prepared with a laser power of 18 W. The scanning trajectory of the laser beam was programmable, and the scanning speed was 500 mm/s. In order to regulate the S vacancies and investigate the effect of S vacancies on the performance of asprepared CoS_x, different laser powers (6 W, 12 W and 18 W) were utilized during laser synthesis, which were denoted as CoSx/CC-L-6W, CoSx/CC-L-12W and CoS_x/CC-L-18W, respectively. For comparison, CoS₂/CC synthesized by calcination of Co-MOF/CC under H₂S atmosphere at 600 °C for 1h was prepared to confirm the preponderance of laser processing. For further study the influence of N-doping on the achieved HER and NRR activity of CoS_x/CC-L, we prepared control samples by laser processing Co-MOF/CC under the mix gases of H₂S and NH₃ with different ratio (10% NH₃/H₂S, 20% NH₃/H₂S and 50% NH₃/H₂S), to obtain the different N doped CoS_x/CC-L (denoted as CoS_x/CC-10% NH₃-L, CoS_x/CC-20% NH₃-L and CoS_x/CC-50% NH₃-L). In addition, the carbon cloth processed by laser under NH₃ atmosphere to obtain the N doped carbon cloth (CC-NH₃-L) were also prepared.

Synthesis of CuS_x and FeS_x anchored on carbon fiber cloths by laser under H₂S atmosphere

Carbon fiber cloths (CC) were also firstly treated as that in the synthesis of $CoS_x/CC-L$. Then the Cu-MOF was grown on carbon fiber cloths (denoted as Cu-MOF/CC) as reported¹. Typically, 1 mmol of copper (II) acetate monohydrate and 0.5 mmol of L-glutamic acid were dissolved in 40 ml of deionized water. Afterwards, the carbon cloth was added and stirred at ambient condition for 20 min. After that, 0.67 mmol of 1,3,5-benzenetricarboxylic acid completely dissolved in 40 ml of ethanol was poured into the above solution under continuous stirring. The solution

immediately turned turbid. After stirring for 14 h at ambient condition, the green precipitate was collected by centrifugation and washed twice with ethanol. The product was dried at 70 °C for overnight. The Cu-MOF/CC was obtained.

The Fe-MOF was also grown on carbon fiber cloths (denoted as Fe-MOF/CC) as reported². Typically, a reaction mixture containing 1 mmol of FeCl₃·6H₂O, 1.5 mmol of 2-aminoterephthalic acid (H₂BDC-NH₂), 35 mL of ethanol, 0.5 mL of acetic acid, and carbon cloth in a Teflon hydrothermal vessel, was placed in an oven at 130 °C for 7 h. The resulting Fe-MOF/CC was washed with ethanol and dried at 70 °C for later use.

Then the same laser synthesis process was adopted to prepare $CuS_x/CC-L$ and $FeS_x/CC-L$ under H_2S atmosphere with a laser power of 18W as for $CoS_x/CC-L$.

Characterization

The morphology and crystal structure were determined by the field emission scanning electron microscope (FESEM, HITACHI regulus 8100) and high resolution transmission electron microscopy (HRTEM, JEM-2100F instrument at an acceleration voltage of 200 kV). The crystalline phase of the prepared samples were detected by a D8 Advance (ThermoFisher, ARL Equinox 3000X) X-ray diffractometer (XRD) with Cu K α radiation (λ = 0.15406 nm). X-ray photoelectron spectra (XPS, Shimadzu, AXIS Ultra Supra) and Raman spectra (HORIBA LabRAM HR Evolution) measurements were recorded to characterize the elementary composition. Electron paramagnetic resonance (EPR) characterizations were carried out on a Bruker ESP-300 spectrometer. The Thermal Imaging Camera (Fotric 226) was used for detecting the temperature of the sealed chamber during the laser processing. X-ray absorption fine structure (XAFS) measurements at the Co K-edge in transmission mode for Co foil or fluorescence mode for samples were performed at Beijing Synchrotron Radiation Facility (beamline 1W1B station), China. Data reduction, data analysis, and EXAFS fitting were performed and analyzed with the Athena and Artemis programs of the Demeter data analysis packages²¹ that utilizes the FEFF6 program²² to fit the EXAFS data. The energy calibration of the sample was conducted through a standard Co foil, which as a reference was simultaneously measured. A linear function was subtracted from the pre-edge region, then the edge jump was normalized using Athena software. The $\chi(k)$ data were isolated by subtracting a smooth, two-stage polynomial approximating the absorption background of an isolated atom. The k²-weighted $\chi(k)$ data were Fourier transformed after applying a Hanning window function ($\Delta k = 1.0$). For EXAFS modeling, the global amplitude EXAFS (*CN*, *R*, σ^2 and ΔE_0) were obtained by nonlinear fitting of the EXAFS equation to the Fourier-transformed data in R-space. The Artemis software and least-squares refinement were used. In order to determine the coordination numbers (CNs) in the Co-S scattering path in sample, the EXAFS of the Co foil is fitted and the obtained amplitude reduction factor S_0^2 value (0.718) was set in the EXAFS analysis.

Electrochemical HER measurements

Electrochemical measurements were performed on an electrochemical workstation (CHI 760C, CH Instruments Inc.) with a three-electrode configuration and 0.5 M H₂SO₄ electrolyte, where the as-prepared CoS_x/CC-L with the effective geometric area of 0.5 * 0.5 cm², carbon rod and Hg/Hg₂Cl₂ electrode (SCE, saturated KCl) were used as the working electrode, reference and counter electrode, respectively. Before HER tests, the 0.5 M H₂SO₄ solutions were saturated with argon for 0.5 h to remove oxygen from the electrolyte. The HER potentials were converted to the reversible hydrogen electrode (RHE) potential using the equation given by $E_{RHE} = E_{SCE} + 0.0591 \times pH + 0.242$, resulting in a shift of +0.2597 V versus RHE (0.5 M H₂SO₄, pH~0.3).The polarization curves with a sweep rate of 5 mV/s were determined at the potential range from 0 to -0.5 V vs. RHE. Cyclic voltammetry (CV) curves at nonfaradaic potentials were measured to calculate the electrochemical double layer capacitance, which could be used for estimating the effective electrochemical double layer following:

 $C_{dl} = (j_a - j_c)/(2 \cdot v) = (j_a + |j_c|)/(2 \cdot v) = \Delta j/(2 \cdot v)$

in which ja and jc is the anodic and cathodic current density, respectively, recorded at

the middle of the select potential range, and v is the scan rate. The chronoamperometric i-t curves were detected at different overpotentials to characterize the catalytic stability of samples. Electrochemical impedance spectroscopy (EIS) was recorded by applying an ac potential amplitude of 10 mV within the frequency range of 100 kHz to 0.01 Hz. The fitting equivalent circuit was composed of the series resistance (Rs), charge transfer resistance (Rct) and a constant phase element (CPE): Rs–(Rct||CPE). The series resistance (Rs) obtained from EIS measurements in the high frequency zone was used to correct the polarization curves for the IR-drop. The amount of final hydrogen gas production was quantified by Gas chromatographic measurements (GC-7900, CEAULIGHT). The 20 wt.% Pt/C electrode as comparison was prepared by dropping the Pt/C inks onto the glassy carbon electrode with a catalyst loading of 0.42 mg cm⁻².

Electrochemical NRR measurements

The electrocatalytic NRR tests were measured by using a two-compartment Htype like electrolytic cell, which was separated by a Nafion 117 membrane (DuPont). The Nafion membrane was pretreated by boiling it in H_2O_2 (5%) at 80 °C for 1 h and deionized water for another 1 h, sequentially. The electrochemical experiments were conducted with an electrochemical workstation (CHI 1000C) by using a threeelectrode configuration (working electrode of as-synthesized materials, counter electrode of Pt plate, and reference electrode of Ag/AgCl/saturated KCl). The working electrode had the effective geometric area of $0.5 * 0.5 \text{ cm}^2$. Before NRR tests, the cathode electrolyte was purged with high purity nitrogen (99.999%, 40 mL min⁻¹) for 0.5 h and then the flow rate was adjusted to 15 mL/min and maintained stable during the constant potential test for 2 h. The ammonia formation rate presented in the manuscript was the average data for the reaction of 2 h. The NRR potentials were converted to the reversible hydrogen electrode (RHE) potential using the equation given by E_{RHE} = $E_{Ag/AgCl}$ + 0.0591 \times pH + 0.194, resulting in a shift of +0.6077 V versus RHE (0.05 M Na₂SO₄, pH~7.1). Polarization curves were obtained using linear sweep voltammetry (LSV) with scan rate of 2 mV·s⁻¹ at 25 °C in 0.05 M Na₂SO₄

aqueous solution with constant N_2 (g) or Ar (g) continually purging for 30 min prior to the measurements. The polarization curves were the steady-state ones after several cycles. The long-term stability test was carried out using chronoamperometry measurements.

Isotope labeling static experiments using ${}^{15}N_2$ (from Anzete, Zibo) as feeding gas were conducted to clarify the source of ammonia. The reactor was previously encapsulated and degassed with argon for several times, and subsequently filled with ${}^{15}N_2$. After NRR process, the obtained ${}^{15}NH_4^+$ electrolyte (0.1 mL, concentrated electrolyte) was thoroughly mixed with 0.5 mL dimethyl sulphoxide-D6 and 0.1 mL D₂O for the 1H nuclear magnetic resonance (NMR) test on a Bruker Avance spectrometer (500 MHz). For comparison, ${}^{14}N_2$ experiment was also operated in the same way.

Determination of ammonia

The concentration of produced ammonia was spectrophotometrically detected by the indophenol blue method same as previous reports²³. In detail, 2 mL aliquot of the solution was removed from the post-electrolysis electrolyte after reaction. Then 2 mL NaOH solution (1 M) containing 5 wt% salicylic acid and 5 wt% sodium citrate was added, followed by 1 mL 0.05 M NaClO and 0.2 mL 1 wt% sodium nitroferricyanide (C₅FeN₆Na₂O) solution. After 1 h, the absorption spectra of the mixed solution were measured with an ultraviolet-visible spectrophotometer. The concentration of NH₃ was determined by absorbance at a wavelength of ~675 nm (**Fig. S1a**). Absolute calibration was achieved using NH₄⁺ of known concentration in 0.01 M HCl solutions as standards. The concentration of ammonia was determined by a standard curve (Absorbance = $0.08677 \times C_{NH3} - 0.04769$, R² = 0.994) (**Fig. S1b**).

The ammonia yield was calculated using the following equation:

$$Yield(NH_3) = \frac{c_{NH_3} \times V}{17 \times t \times A}$$

where c_{NH3} is the measured ammonia concentration (µg mL⁻¹), V is the volume of the electrolyte solution (10 mL), t is the reaction time (2 h), A is the area of the working electrode (2 cm²). The Faradaic efficiency for NRR is defined as the quantity of

electric charge used for synthesizing ammonia. The production of NH_3 molecule theoretically needs three electrons. The Faradaic efficiency (FE) was calculated by the following equation:

$$FE = \frac{3F \times c_{NH_3} \times V}{17 \times \int I dt} \times 100\%$$

Where F is Faraday constant (96485 C mol⁻¹), c_{NH3} is the measured ammonia concentration (µg mL⁻¹), V is the volume of the electrolyte solution (10 mL), I is the current (A), t is the reaction time (2 h). The "17" in the equations for the ammonia yield and faradaic efficiency refers to the NH₃ molar mass (17 g mol⁻¹).

Fig. S1. Calibration of the indophenol blue method using a series of NH_4Cl standard solutions. (a) UV-vis absorbance curves of indophenol assays with NH_4^+ ions, (b) calibration curve used for estimation of NH_3 from the NH_4^+ ion concentration.

Fig. S2. The good flexibility of as-prepared $CoS_x/CC-L$.

Fig. S3. The as-prepared $CoS_x/CC-L$ with the large size of 10×10 cm².

Fig. S4. The photograph (a) and infrared thermal images (b) of laser synthesis equipment.

Fig. S5. The SEM image of Co-MOF/CC.

Fig. S6. (a) XRD pattern of Co-MOF/CC and CoS_x/CC-L. (b) Energy dispersive-X-ray analysis of CoS_x/CC -L.

Fig. S7. The SEM image of holes on the surface of the carbon fiber for $CoS_x/CC-L$.

Fig. S8. EDS mapping of C element, Co element, S element, N element and O element for $CoS_x/CC-L$.

Fig. S9. High-resolution XPS spectra of the survey spectra (a), C 1s (b), N 1s (c) and O 1s (d) for Co-MOF/CC, $CoS_x/CC-L$ and CoS_2/CC .

Fig. S10. XRD pattern of CoS_2/CC .

Fig. S11. SEM images of CoS₂/CC.

Fig. S12. The SEM images of CC-L.

Fig. S13. Polarization curves of CC-NH₃-L, $CoS_x/CC-L$, $CoS_x/CC-10\%$ NH₃-L, $CoS_x/CC-20\%$ NH₃-L and $CoS_x/CC-50\%$ NH₃-L in 0.5 M H₂SO₄ without iR-compensation.

Fig. S14. HER polarization curves for $CoS_x/CC-L-6W$, $CoS_x/CC-L-12W$ and $CoS_x/CC-L-18W$ without iR-compensation.

Fig. S15. Nyquist plots of $CoS_x/CC-L$ with different overpotentials.

Nyquist plots of $CoS_x/CC-L$ with different overpotentials were shown in **Fig. S15.** The charge transfer resistance (Rct) is related to the electrocatalytic kinetics and its lower value corresponds to the faster reaction rate, which can be obtained from the semicircle in the low frequency zone. Rct value of $CoS_x/CC-L$ was found to decrease significantly with increasing overpotentials, from ~45 Ω at 100 mV to ~15 Ω at 200 mV. The results signified the quick electron transfer and the advantageous HER kinetics towards the electrolyte interface for $\text{CoS}_x/\text{CC-L}$.

Fig. S16. Cyclic voltammograms of $CoS_x/CC-L$ (a), CoS_2/CC (b) and CC-L (c) within no faradaic reactions ranges.

Fig. S17. TEM (a) and HRTEM (b) images of $CoS_x/CC-L$ after HER measurements.

Fig. S18. Electrocatalytic NRR performances with NH_3 yield (a) and Faradaic efficiency (b) for samples synthesized with different laser powers at different potentials.

As shown in **Fig. S18**, the NH₃ yield and Faradaic efficiency were increased linearly from $CoS_x/CC-L-6W$ to $CoS_x/CC-L-18W$. At the optimal polarization potential of -0.2 V vs. RHE, the highest electrocatalytic NRR activity of $CoS_x/CC-L-18W$ was obtained with the NH₃ yield and the corresponding Faradaic efficiency as high as ~12.2 µg h⁻¹ mg⁻¹_{cat.} and 10.1%, respectively, which were much higher than those of the $CoS_x/CC-L-6W$ (~3.8 µg h⁻¹ mg⁻¹_{cat.} and 2.5%) and $CoS_x/CC-L-12W$ (~7.1 µg h⁻¹ mg⁻¹_{cat.} and 5.1%). This may be associated with the increasing amount of S vacancies with the applied laser power, providing more adsorption sites for N₂. As the electron-rich sites, S vacancies led to the effective N₂ activation.

Fig. S19. Corresponding i-t curves at different potentials for CoS_x/CC-L.

Fig. S20. UV-vis absorption spectra of the resultant electrolytes at different potentials for $CoS_x/CC-L$.

Fig. S21. The ¹H NMR spectra of commercial ¹⁵NH₄Cl samples (a, b) were collected as standard spectra and the internal standard method as well as ¹H NMR spectra using $^{15}N_2$ as the feeding gas with different reactive time (c, d) were utilized to verify the authenticity of the data.

Fig. S22. Corresponding UV-vis absorption spectra of the resultant electrolytes at different potentials and corresponding i-t curves at different potentials for CC-L (a, b), Co-MOF/CC (c, d), CoS_2/CC (e, f).

Fig. S23. Electrocatalytic NRR performances of NH₃ yield for $CoS_x/CC-L$, $CoS_x/CC-10\%$ NH₃-L, $CoS_x/CC-20\%$ NH₃-L and $CoS_x/CC-50\%$ NH₃-L in 0.05 M Na₂SO₄.

Fig. S24. Electrocatalytic NRR performances of NH_3 yield for $FeS_x/CC-L$, $CuS_x/CC-L$ and $CoS_x/CC-L$ samples.

Fig. S25. SEM images of $CoS_x/CC-L$ after i-t testing for NRR.

Table	S1 .	EXAFS	fitting	parameters	at	the	Co	K-edge	for	various
sample	$s (S_0^2)$	=0.718)								

Sample	Shell	CNa	$R(\text{\AA})^b$	$\sigma^2({ m \AA}^2)^c$	$\Delta E_0(\mathrm{eV})^d$	R factor
Co foil	Co-Co	12*	$2.49{\pm}0.01$	0.0062 ± 0.0003	7.1	0.0021
CoS ₂ /CC	Co-S	6.0 ± 0.2	2.31 ± 0.01	0.0050 ± 0.0009	2.9	0.0058
CoS _x /CC-L	Co-S	5.8 ± 0.4	$2.30{\pm}0.01$	$0.0065{\pm}\ 0.0009$	2.4	0.0039

^{*a*}*CN*, coordination number; ^{*b*}*R*, distance between absorber and backscatter atoms; ^{*c*} σ^2 , Debye-Waller factor to account for both thermal and structural disorders; ^{*d*} ΔE_0 , inner potential correction; *R* factor indicates the goodness of the fit. *S*0² was fixed to 0.718, according to the experimental EXAFS fit of Co foil by fixing CN as the known crystallographic value. Fitting range: $3.0 \le k$ (/Å) ≤ 12.5 and $1.0 \le R$ (Å) ≤ 3.0 (Co foil); $3.0 \le k$ (/Å) ≤ 12.4 and $1.0 \le R$ (Å) ≤ 2.5 (CoS2); $3.0 \le k$ (/Å) ≤ 12.4 and $1.0 \le R$ (Å) ≤ 2.5 (CoS2); $3.0 \le k$ (/Å) ≤ 12.4 and $1.0 \le R$ (Å) ≤ 2.5 (Co2 and Co3). A reasonable range of EXAFS fitting parameters: $0.700 < S_0^2 < 1.000$; CN > 0; $\sigma^2 > 0$ Å²; $\Delta E_0 < 10$ eV; R factor < 0.02.

Table S2. Comparison of the electrocatalytic performance of $CoS_x/CC-L$ with Cobalt sulfide-based electrocatalysts reported for HER in acidic electrolyte.

Catalyst	Electrolyte	Current	Overpotential	Reference	
	solution	density	at the		
		(j)	corresponding		
			j		
CoS _x /CC-L	0.5M	-10	87 mV	This work	
	H_2SO_4	mA/cm ²			
CoS ₂ /RGO-CNT	0.5M	-10	142 mV	Angew. Chem. Int.	
	H_2SO_4	mA/cm ²		Ea. 2014, 53, 12594 -12599	
$CoS_2 NW$	0.5M	-10	145 mV	J. Am. Chem. Soc.	
	H_2SO_4	mA/cm ²		2014, 136, 10053–10061.	
$Co_{0.9}S_{0.58}P_{0.42}$	0.5M	-10	139 mV	ACS Nano 2017 , 11,	
	H_2SO_4	mA/cm ²		11031-11040	
surface selenized	0.5M	-10	110 mV	ACS Catal. 2019 , 9,	
meso-CoS ₂	H_2SO_4	mA/cm ²		456-465	
$Co_9S_8@MoS_x$	0.5M	-10	98 mV	Nano Energy 2017 ,	
	H_2SO_4	mA/cm ²		32, 4/0-4/8.	
Co ₉ S ₈ -NDCL	0.5M	-10	96 mV	ACS Appl. Nano	
	H_2SO_4	mA/cm ²		Mater. 2021, 4, 1776–1785	
Mo ₂ N/CoS ₂	0.5M	-10	85 mV	ACS Appl. Mater.	
	H_2SO_4	mA/cm ²		Interfaces 2021, 13, 41573–41583	
$Zn_{0.30}Co_{2.70}S_4$	0.5M	-10	80 mV	J. Am. Chem. Soc.	
	H_2SO_4	mA/cm ²		2 016 , 138, 1359–1365	

MCNTs@CoS _x @MoS	0.5M	-10	196 mV	Chemical
2	H_2SO_4	mA/cm ²		Engineering Journal 417 (2021) 129270
$1T-MoS_2/CoS_2$	0.5M	-10	26 mV	Small 2020, 16,
	H_2SO_4	mA/cm ²		2002850.
MoS_2/CoS_2	0.5M	-10	90 mV	J. Mater. Chem. A,
	H_2SO_4	mA/cm ²		2019, 7, 13339– 13346
CoS_x	0.5M	-10	42 mV	Energy Environ. Sci.,
	H_2SO_4	mA/cm ²		2018, 11, 246/-24/5
NiS-CoS	0.5M	-10	85 mV	Electrochimica Acta
	H_2SO_4	mA/cm ²		260 (2018) 82-91.
CoS_2	0.5M	-10	53 mV	Electrochimica Acta
	H_2SO_4	mA/cm ²		259 (2018) 955-961.
$CoS_x@MoS_2$	0.5M	-10	239 mV	ACS Sustainable
	H_2SO_4	mA/cm ²		Chem. Eng. 2018, 6, 12961–12968.
CoSP	0.5M	-10	58 mV	ACS Sustainable
	H_2SO_4	mA/cm ²		Chem. Eng. 2018, 6, 15618–15623.
CoS_2	0.5M	-10	43 mV	ACS Energy Lett.
	H_2SO_4	mA/cm ²		2018, 3, 779–786.
CoS_2/GF	0.5M	-20	144 mV	Phys. Chem. Chem.
	H_2SO_4	mA/cm ²		Phys., 2017, 19, 4821 - 4826.
Co_3O_4 $@CoS_2$	0.5M	-10	152 mV	Journal of Power
	H_2SO_4	mA/cm ²		<i>Sources</i> 356 (2017) 89-96.
$CoS_2/CoSe_2$	0.5M	-10	80 mV	J. Mater. Chem. A,
	H_2SO_4	mA/cm ²		2017, 5, 2504–2507.
(NSCDs)/CoS	0.5M	-10	165 mV	J. Mater. Chem. A,
	H_2SO_4	mA/cm ²		2017, 5, 2717 - 2723.
CoS ₂ NP/Al ₂ O ₃ NSs	0.5M	-10	53 mV	J. Mater. Chem. A,
	H_2SO_4	mA/cm ²		2017, 5, 2861 - 2869.
Fe-NiS ₂	0.5M	-10	121 mV	J. Mater. Chem. A, 2017, 5, 10173 -

	$\mathrm{H}_2\mathrm{SO}_4$	mA/cm ²		10181.
CoS ₂ /RGO	0.5M	-10	180 mV	International Journal
	$\mathrm{H}_2\mathrm{SO}_4$	mA/cm ²		of Hydrogen Energy 42 (2017) 6665-6673.
CoS/CC	0.5M	-10	212 mV	International Journal
	$\mathrm{H}_2\mathrm{SO}_4$	mA/cm ²		of Hydrogen Energy 42 (2017) 9914-9921.
CoS_2/MoS_2	0.5M	-10	154 mV	International Journal
	H_2SO_4	mA/cm ²		of Hydrogen Energy 42 (2017) 12246- 12253.
CoS2@MoS2/RGO	0.5M	-10	98 mV	Adv. Funct. Mater.
	$\mathrm{H}_2\mathrm{SO}_4$	mA/cm ²		2017, 1602699.
CoNi ₂ S ₄ /WS ₂ /Co ₉ S ₈	0.5M	-10	61 mV	Applied Catalysis B:
	$\mathrm{H}_2\mathrm{SO}_4$	mA/cm ²		(2021) 120455.
Co_9S_8 - MoS_2	0.5M	-10	> 200 mV	Adv. Funct. Mater.
	$\mathrm{H}_2\mathrm{SO}_4$	mA/cm ²		2020, 30, 2002536.
MoS ₂ /Co ₉ S ₈ /Ni ₃ S ₂ /Ni	0.5M	-10	103 mV	J. Am. Chem. Soc.
	H_2SO_4	mA/cm ²		10417 <i>-</i> 10430.
Co ₉ S ₈ /Ni ₃ S ₂	0.5M	-10	124 mV	NATURE
	$\mathrm{H}_2\mathrm{SO}_4$	mA/cm ²		<i>COMMUNICATION</i> <i>S</i> (2018) 9:3132.
Fe-Co ₉ S ₈ NSs/CC	0.5M	-10	65 mV	Electrochimica Acta
	$\mathrm{H}_2\mathrm{SO}_4$	mA/cm ²		264 (2018) 157-165.
Co_9S_8/MoS_2	0.5M	-10	97 mV	Adv. Mater. 2018, 30,
	$\mathrm{H}_2\mathrm{SO}_4$	mA/cm ²		1707301.
$Co_9S_8/NC@MoS_2$	0.5M	-10	117 mV	ACS Appl. Mater. Interfaces 2017, 9,
	H_2SO_4	mA/cm ²		28394 - 28405.
$Co_3S_4@MoS_2$	0.5M	-10	210 mV	Chem. Mater. 2017,
5 7 2	H_2SO_4	mA/cm ²		29, 5566 –5573.

Table S3. Comparison of the neutral NRR performance of $\text{CoS}_x/\text{CC-L}$ with the other

reported electrocatalysts	rocatalysts.
---------------------------	--------------

Catalyst	Electrolyte NH ₃ yield		Faradaic	Reference
	solution	$(\mu g h^{-1} cm^{-2}_{cat.})$	efficiency (%	
)	
CoS _x /CC-L	0.05M Na ₂ SO ₄	12.2 (-0.2 V)	10.1 (-0.2 V)	This work
CoVP@NiFeV-	0.1M Na ₂ SO ₄	27.2 (-	1.17 (-0.5 V)	Appl. Catal. B:
LDHs		0.3V)		Environ., 2020 , 265, 118559
NiO@TiO ₂	0.05M Na ₂ SO ₄	10.75 (-	9.83 (-0.4 V)	J. Mater. Chem. A,
		0.4V)		2022 , 10, 2800-2806
CoS ₂ -CeO ₂ /Ti	0.1M Na ₂ SO ₄	22.37 (-	2.52 (-0.5 V)	ACS Sustainable
		0.5V)		Chem. Eng. 2021, 9, 13399
VNiON	0.05M Na ₂ SO ₄	6.78 (-	5.57 (-0.2 V)	J. Mater. Chem. A,
		0.4V)		2020 , 8, 91
Mo-	0.1M Na ₂ SO ₄	16.1 (-0.25 V)	7.1 (-0.25 V)	Adv. Mater. 2020,
Mo ₂ C@NCNTs				20021//
MXene/TiFeO _x	0.1M Na ₂ SO ₄	2.19 (-0.2 V)	25.4 (-0.2 V)	ACS Nano 2020 , 14, 7, 9089–9097
Zr-doped TiO ₂	0.1M Na ₂ SO ₄	8.9 (-	17.3 (-0.45 V)	Nature Commun,
		0.45V)		2019 ,10, 28/7
V_2O_3/C	0.1M Na ₂ SO ₄	12.3 (-	7.28 (-0.6 V)	Inorg. Chem. Front.
		0.6V)		2019 , 0, 391
TiO ₂ /Ti	0.1M Na ₂ SO ₄	5.6 (-0.7V)	2.50 (-0.7 V)	ACS Appl. Mater.
				Interfaces 2018 , 10, 28251
MoS ₂ /CC	0.1M Na ₂ SO ₄	4.94 (-	1.17 (-0.5 V)	<i>Adv. Mater.</i> 2018,
		0.5V)		30, 1800191
Y ₂ O ₃ nanosheet	0.1M Na ₂ SO ₄	6.49 (-	2.53 (-0.9 V)	Ind. Eng. Chem. Res.
		0.9V)		2018, 57, 16622
SnO ₂ /CC	0.1M Na ₂ SO ₄	9.0 (-0.8V)	2.17 (-0.7 V)	Chem. Commun. 2018, 54, 12966

Reference

[1] Hao Bin Wu, Bao Yu Xia, Le Yu, Xin-Yao Yu & Xiong Wen (David) Lou, *Nat. Commun.* 2015, 6, 6512.

[2] Duraisamy Senthil Raja, Hao-Wei Lin, Shih-Yuan Lu, Nano Energy 57 (2019) 1–
13.