Electronic Supplementary Information

Determination of ion concentration¹

Determination of NO₃⁻-N: First, part of electrolyte after nitrate electroreduction process is taken out from the cathode. The electrolyte was diluted to keep the NO₃⁻-N within the detection range. Then, 1 M HCl (100 μ L) and 0.8 wt% (10 μ L) sulfamic acid were added into the diluted electrolyte (5 mL), and the mixture is placed for 10 min before using. UV-Vis spectrophotometry was employed to determine the absorbance of the mixture from 200 nm to 300 nm. Based on the equation of A = A_{220nm} - 2A_{275nm}, the final absorbance was obtained. The concentration-absorbance curve was calibrated using different concentrations of KNO₃.

Determination of NO₂⁻-N: The color reagent was prepared by dissolving 0.8 g paminobenzenesulfonamide, 0.04g N-(1-Naphthyl) ethylenediamine dihydrochloride and 2 mL phosphoric acid (ρ =1.70 g/mL) in 10 mL deionized water. Specifically, 0.1 mL of color reagent was added into electrolyte which diluted to detection range. After 20 min, the absorbance value at a wavelength of 540 nm can be determined by the UV-Vis spectrophotometry. The absorbance of NaNO₂ was determined at different concentrations to obtain the concentration-absorbance curve.

Determination of NH₃(NH₄⁺)-N: The concentrations of ammonia can be quantified using Nessler's reagent. Thus, 0.1 mL of 0.5 g/L sodium potassium tartrate solution and 0.1 mL of Nessler's reagent mixed into the electrolyte which was diluted to detection range. After standing for 20 minutes, the wavelength of 420 nm was measured using UV-vis spectrophotometry to reveal the absorbance of NH₄⁺-N. The concentration-absorbance curve was obtained by determining the different concentrations of standard NH₄Cl solutions.

¹⁵N Isotope Labeling Experiments:

Isotope labelling experiments were performed using $K^{15}NO_3$ -¹⁵N as a nitrogen source to replace $K^{14}NO_3$ -¹⁴N, for determining the source of ammonia. The pH of the electrolyte was adjusted to a weak acid by adding 4 M H₂SO₄. For preparation of calibration curve, different concentration of ¹⁵NH₄⁺-¹⁵N solutions (50, 100, 150, 200, 250 mg L⁻¹) and 50 mg L⁻¹ maleic acid were added in 0.5 M K₂SO₄. The D₂O was added aforementioned mixture for the NMR detection. On account of ¹⁵NH₄⁺-¹⁵N concentration and the area ratio were positively correlated, the calibration curve can be obtained by using the peak area ratio between ¹⁵NH₄⁺-¹⁵N and maleic acid.

Calculation of the conversion rate, yield, selectivity, and Faradaic efficiency

The calculation of all values is provided by the absorbance measured by the UV-Vis spectrophotometer.

The conversation of NO₃⁻ was calculate using Eq. S1:

$$NO_{3}^{-} Conversion = \Delta C_{NO_{3}^{-}} / C_{0} \times 100\%$$
 (Eq. S1)

The selective of NH₃ was calculate using Eq. S2:

NH₃ Selectivity=
$$C_{NH_3} / \Delta C_{NO_3^-} \times 100\%$$
 (Eq. S2)

The selective of NO_2^- was calculate using Eq. S3:

$$NO_{2}^{-} Selectivity = C_{NO_{2}^{-}} / \Delta C_{NO_{3}^{-}} \times 100\%$$
(Eq. S3)

The yield of NH₃ was calculate using Eq. S4:

$$\text{Yield}_{\text{NH}_3} = (C_{\text{NH}_3} \times V) / (M_{\text{NH}_3} \times t \times S)$$
(Eq. S4)

The Faradaic efficiency was calculate using Eq. S5:

Faradaic efficiency= $(8F \times C_{NH_3} \times V) / (M_{NH_3} \times Q) \times 100\%$ (Eq. S5)

where C_{NH3} is the concentration of NH_{3(aq)}, C_{NO2}^{-} is the concentration of NO_{2⁻(aq)}, $\Delta C_{NO3^{-}}$ is the concentration difference of NO_{3⁻} before and after electrolysis, C_0 is the initial concentration of NO_{3⁻}, V is the electrolyte volume, M_{NH3} is the molar mass of NH₃, t is the electrolysis time, S is the area of catalyst, F is the Faradaic constant (96485 C mol⁻¹), Q is the total charge passing the electrode.

Fig. S1 SEM image of Cu(OH)₂/CF.

Fig. S2 SEM images of (a) MnO_2 nanosheets and (b) CuO/CF.

Fig. S3 Schematic illustration showing the electrocatalytic system for nitration reduction to ammonia.

Fig. S4 (a) UV-vis absorption spectroscopy for various concentrations of NO_3^--N . (b) Calibration curve used to estimate the concentrations of NO_3^--N .

Fig. S5 (a) UV–vis absorption spectroscopy for various concentrations of NO_2^--N . (b) Calibration curve used to estimate the concentrations of NO_2^--N .

Fig. S6 (a) UV–vis absorption spectroscopy for various concentrations of NH_3 -N. (b) Calibration curve used to estimate the concentrations of NH_3 -N.

Fig. S7 (a) NO_3^-N conversition and (b) NH_3-N selectivity on the $CuO@MnO_2/CF$ with various NO_3^--N concentrations.

Fig. S8 (a) SEM image of the CuO@MnO₂/CF after stability testing. (b) TEM image of the CuO@MnO₂ nanowires obtained from CuO@MnO₂/CF after stability testing.

Fig. S9 (a) XRD pattern and (b) Cu 2p XPS spectrum for CuO@MnO₂ nanowires after nitrate electroreduction testing.

Fig. S10 Time-depended concentrations of NO_3^--N , NO_2^--N and NH_3-N on the CuO@MnO₂/CF at - 1.3 V (vs. SCE).

Fig. S11 Ammonia yield rate over the CuO@MnO₂/CF in K₂SO₄ electrolyte with and without nitrate.

Fig. S12 (a) The ¹H NMR spectra of ¹⁵NH₄⁺ with different ¹⁵NH₄⁺⁻¹⁵N concentration. (b) The standard curve of integral area ($^{15}NH_4^{+-15}N / C_4H_4O_4$) against $^{15}NH_4^{+-15}N$ concentration.

Fig. S13 CV curves at various scan rates for (a) CuO@MnO₂/CF, (b) CuO/CF, and (c) Cu(OH)₂/CF. (d) Capacitive current densities of the different samples.

Fig. S14 EIS spectra of the CuO@MnO₂/CF, CuO/CF, and MnO₂/CF at -1.3 V vs. SCE.

Electrocatalysts	Electrolytes	Performance	Ref.
CuO@MnO ₂ /CF	0.5 M K ₂ SO ₄ , 200 mg L ⁻¹ NO ₃ ⁻ -N	^a r _{NH3} : 0.240 mmol h ⁻¹ cm ⁻² ^b S _{NH3} : 96.67 % ^c FE _{NH3} : 94.92 % (-1.3 V vs. SCE, 2 h)	This work
Co ₃ O ₄ -TiO ₂ - PVP	0.1 M Na ₂ SO ₄ 0.1 M NaNO ₃	S _{NH3} : 73 % (10 mA cm ⁻²)	2
TiO _{2-x}	0.1 M KOH, 10 mM KNO ₃	S _{NH3} : 85 % FE _{NH3} : 87.1% (–1.6 V <i>vs.</i> SCE, 2 h)	3
Cu/rGO/ graphite plate(GP)	0.02 M NaCl, 0.02 M NaNO ₃	S _{NH3} : 29.93% (-1.4 V <i>vs.</i> SCE, 3 h)	4
Cu–PTCDA	0.1 M PBS, 500 ppm KNO ₃	r_{NH3} : 436±85 µg h ⁻¹ cm ⁻² FE _{NH3} : 77 ± 3% (-0.4 V vs. RHE, 2 h)	5
Pd-Cu/SS	0.01 M NaClO ₄ , 0.6 mM NaNO ₃	S _{NH3} : 6% (-0.2 V <i>vs.</i> SCE, 3 h)	6
Ir NTs	0.1 M HClO ₄ 1 M NO ₃ N	FE _{NH3} : 84.7% (-0.06 V <i>vs.</i> SCE)	7
Co ₃ O ₄ /Ti	0.05 M Na ₂ SO ₄ , 100 ppm NO ₃ ⁻ -N	S_{NH3} : ~ 70% (10 mA cm ⁻² , 3 h)	8
Cu@Cu ₂₊₁ O NWs	0.5 M K ₂ SO ₄ , 50 mg L-1 NO ₃ ⁻ -N	S _{NH3} : 76% (-1.2 V <i>vs.</i> SCE, 2 h)	9
CuPd aerogels	0.5 M K ₂ SO ₄ , 50 μg mL-1 NO ₃ ⁻ -N	S _{NH3} : 76% (-0.46 V <i>vs.</i> RHE, 2 h)	10
CuPd@DCLMCS/CNTs	100 mg L-1 NO ₃ ⁻ -N 0.1 M Na ₂ SO ₄	S _{NH3} : 5% FE _{NH3} : 36% (–1.35 V <i>vs.</i> RHE, 24 h)	11
CuO-Co ₃ O ₄ /Ti	100 mg L-1 NO ₃ N, 0.05 M Na ₂ SO ₄	S _{NH3} :44% FE _{NH3} : 54.5% (20 mA cm ⁻² , 3 h)	12

Table S1 The electrochemical nitrate reduction performance comparison between the $CuO@MnO_2/CF$ and some other reported electrocatalysts.

 $^{a}r_{\rm NH3}$: ammonia yield rate; $^{b}S_{\rm NH3:}$ ammonia selectivity; $^{c}FE_{\rm NH3}$: ammonia faradaic efficiency

References

- 1 Y. Wang, W. Zhou, R. Jia, Y. Yu and B. Zhang, Angew. Chem. Int. Ed., 2020, 59, 5350-5354.
- 2 J. N. Gao, B. Jiang, C. C. Ni, Y. F. Qi, Y. Q. Zhang, N. Oturan and M. A. Oturan, *Appl. Catal. B Environ*, 2019, **254**, 391-402.
- 3 R. R. Jia, Y. T. Wang, C. H. Wang, Y. F. Ling, Y. F. Yu and B. Zhang, Acs Catal., 2020, 10, 3533-3540.
- 4 D. Yin, Y. Liu, P. Song, P. Chen, X. Liu, L. Cai and L. Zhang, *Electrochim. Acta*, 2019, **324**, 134846.
- 5 G.-F. Chen, Y. Yuan, H. Jiang, S.-Y. Ren, L.-X. Ding, L. Ma, T. Wu, J. Lu and H. Wang, *Nat. Energy*, 2020, **5**, 605-613.
- 6 H. Ji, P. Du, D. Zhao, S. Li, F. Sun, E. C. Duin and W. Liu, *Appl. Catal. B Environ*, 2020, 263, 118357.
- 7 J.-Y. Zhu, Q. Xue, Y.-Y. Xue, Y. Ding, F.-M. Li, P. Jin, P. Chen and Y. Chen, ACS Appl. Mater. Interfaces, 2020, 12, 14064-14070.
- 8 L. Su, K. Li, H. Zhang, M. Fan, D. Ying, T. Sun, Y. Wang and J. Jia, *Water Res.*, 2017, 120, 1-11.
- 9 T. Ren, K. Ren, M. Wang, M. Liu, Z. Wang, H. Wang, X. Li, L. Wang and Y. Xu, Chem. Eng. J., 2021, 426.
- 10 Y. Xu, K. Ren, T. Ren, M. Wang, M. Liu, Z. Wang, X. Li, L. Wang and H. Wang, *Chem Commun*, 2021, **57**, 7525-7528.
- 11 H. Xu, J. Wu, W. Luo, Q. Li, W. Zhang and J. Yang, Small, 2020, 16, e2001775.
- 12 M. Yang, J. Wang, C. Shuang, A. Li, Chemosphere 2020, 255, 126970