Supporting Information

Mitigating deep-level defects through a self-healing process for highly efficient wide-bandgap inorganic CsPbI_{3-x}Br_x perovskite photovoltaics

Jun Liu^{*a*,1}, Ming Wang^{*a*,1}, Jinhong Lin^{*a*}, Guojie Chen^{*a*}, Baoxing Liu^{*a*}, Jincheng Huang^{*a*}, Meng Zhang^{*a*}, Guangxing Liang^{*a*}, Lei Lu^{*b*}, Ping Xu^{*a*}, Bingbing Tian^{*c*}, Hoi-Sing Kwok^{*d*}, and Guijun Li^{*a*,*}

^a Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.

^b School of Electronic and Computer Engineering, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China.

^c Institute of Microscope Optoelectronic, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.

^d State Key Lab of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999007, Hong Kong.

Corresponding Author

* E-mail: gliad@connect.ust.hk

¹ These authors contributed equally to this work.

Figure S1 (a) UV-vis absorption spectra and (b) Energy bandgap of the fresh and aged perovskite films.

-3.2 -3.4 -3.4 -3.6 3.0 3.5 5.0 5.5 6.0 6.5 7.0 4.0 4.2 4.4 4.6 4.8 5.0 4.5 4.0 1000/T(K⁻¹) 1000/T(K⁻¹)

Figure S3 Arrhenius plot extracted from the derivative peak of $\omega(dC/d\omega)$ versus ω plot at low-frequency region for (a) Fresh; (b) Aged devices.

Figure S4. The statistical data of the CsPbI_{3-x}Br_x PSCs with 5 μ l, 2.5 μ l water as an additive in the inorganic perovskite precursor. The data of the aged devices is given for comparison.(a) V_{oc}; (b) J_{sc}; (c) FF; (d) PCE

Figure S5 Cross-section SEM image of the $CsPbI_{3-x}Br_x PSC$.

Figure S6. (a) J–V curves of electron-only devices for the fresh and aged film in an inert N_2 gas condition; (b) Typical J-V curves of CsPbI_{3-x}Br_x PSCs aged in a low humidity condition and in an inert N_2 gas condition.

Figure S7. Comparison of the CsPbI_{3-x}Br_x PSCs fabricated with the aging process conducted in different conditions. (a) Aged in 10% RH condition, (b) Aged in O₂ condition.

Figure S8. (a) J–V characteristics of the PSCs fabricated from the aging process with different humidity conditions; (b) Photographs of the storage boxes used for controlling the humidity.

Figure S9 J-V curves of the (a) aged and (b) fresh PSCs measured with different scan directions. HI is defined according to the equation: $HI = (PCE_{Reverse} - PCE_{Forward})/PCE_{Reverse} \times 100\%$; (c) EQE and 1-R curves of the aged PSC. (d) Steady-state output of the fresh and aged PSCs under the voltages at maximum power points of 0.80 V and 1.04 V, respectively.

Figure S10 PCE evolution of the unencapsulated device under \sim 30% RH at room temperature in ambient condition.

Figure S11 Device simulation using SCAPS for the CsPbI_{3-x}Br_x PSC with different shallow-level defect densities. The E_a of the shallow-level defect is 0.25 eV.

Figure S12 Light-dependent V_{oc} measurment.

Table S1 The device parameters of $CsPbI_{3-x}Br_x PSCs$ fabricated from the aging process with different RH conditions.

Aging condition	Voc(V)	Jsc(mA/cm2)	FF(%)	PCE(%)
RH=5%	1.18	17.38	79.37	16.3
RH=10%	1.23	17.98	80.96	17.85
RH=15%	1.17	17.20	68.09	13.80
RH=20%	1.08	17.70	67.12	12.92
RH=30%	0.98	6.17	49.45	7.86

Table S2 The details of the device structure and semiconductor parameters used for the SCAPS simulation.

Parameters	ITO	SnO ₂	CsPbI _{3-x} Br _x	Spiro-OMeTAD
Thickness (nm)	60	25	500	100
Bandgap Energy (Eg) eV	3.2	3.4	1.82	3.2
Electron affinity (γ) eV	4	4.2	3.85	2.15
Relative Dielectric Permittivity (ε _r)	9	9	3.6	3
Effective Conduction Band Density (N _c) (cm ⁻³)	1×10 ²⁰	1×10 ²⁰	8×10 ¹⁸	1×10 ²⁰
Effective Valence Band Density (N _v) (cm ⁻³)	1 ×10 ²⁰	1×10 ²⁰	8×10 ¹⁸	1×10 ²⁰
Electron thermal velocity (cm s ⁻¹)	1×10 ⁷	1×10 ⁷	1×10 ⁴	1×10 ⁷
Hole thermal velocity (cm s ⁻¹)	1×10 ⁷	1×10 ⁷	1×10 ⁴	1×10 ⁷
Electron mobility (cm2 V ⁻¹ s ⁻¹)	0.1	0.1	2	0.1
Hole mobility (cm2 V ⁻¹ s ⁻¹)	0.1	0.1	2	0.1