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S1. Detailed description of the hybrid models

S1.1. K -Nearest Neighbour (KNN)

The K-nearest neighbour (KNN) is a non-parametric learning algorithm that is unique for 

analysis in segmentation studies 1. Unlike parametric techniques, KNN does not assume the basic 

distribution of data. Non-parametric algorithms are better linked to real-world problemas where 

the information and data generally do not follow theoretical hypotheses. In addition, with KNN, 

there is no explicit training step, which means that the time necessary to train the model is much 

less. Unlike other machine learning techniques, calculations are based on a complete and wide 

data set. However, it is limited in terms of memory consumption and time. In the worst case, it 

may use all the data points to make a decision, or it may require a huge block of memory to store 

massive training data. Some of the assumptions that are commonly made while using KNN, are 

designed as follows:

S1.2. Adaptive boosting (AdaBoost)

Freund and Schapire for the first time suggested the AdaBoost system, which can assume the 

reweighted data for weak classifiers 2. However, this system can reduce the focus of the 

inexperienced classifier 3. The basic steps of the AdaBoost system are summarized as follows:

First, define the data of weights as: ; 
 𝑤𝑗 =

1
𝑛

, 𝑗 = 1,2,….,𝑛

Second, in order to obtain the weighted error, the training data were settled to a weak classifier 

of   for each i as follows:   , ;𝑊𝑙𝑖(𝑥)

𝐸𝑟𝑟𝑖 =

𝑛

∑
𝑗 = 1

𝑤𝑗𝐼(𝑡𝑗 ≠ 𝑤𝑙𝑖(𝑥))

𝑛

∑
𝑗 = 1

𝑤𝑗 𝐼(𝑥) = {0 𝑖𝑓 𝑥 = 𝑓𝑎𝑙𝑠𝑒 
1 𝑖𝑓 𝑥 = 𝑡𝑟𝑢𝑒

Third, for every i, the weight determination is associated with each predictor as: 

𝛽𝑖 = 𝑙𝑜𝑔((1 ‒ 𝐸𝑟𝑟𝑖)

𝐸𝑟𝑟𝑖
)
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Forth, the modifying process of the data weights for every i based on N (the classifier’s number) 

is calculated associated with the weak classifier data tests (x) adjusting as the output data.

S1.3. Support vector machine regression (SVMR)

The most possible utilization for two main support vector clustering (SVC) and support vector 

regression (SVR) is the application of a series of machine learning algorithms called support 

vector machine (SVM) 4. Usually, the support vector regression (SVR) can be used for the soft 

computation associated with the well-established mathematical relationship. Nowadays, the 

application of support vector regression (SVR) has attracted due to its capability to model and 

assessment of different complex structures 5. The key aspects of the SVR concept are considered 

in this study as follows: 

For example, for a series of dataset as  associated with , while the d is the [(𝑥1, 𝑦1),…..,(𝑥𝑛, 𝑦𝑛)]  𝑥 ∈ 𝑅𝑑

one-dimensional input space and  considered as the output vector in order to estimate output 𝑦 ∈ 𝑅

data as follows:

𝑦 = 𝑓(𝑥) = 𝑤.𝜙(𝑥𝑖) + 𝑏                (1)

herein, the weight represented by w, the b presents the bias vectors, and the  is the kernel’s 𝜙(𝑥)

function. In 1997, Vapnik and his coworkers 6 suggested the process in order to obtain the bias 

vectors and correct values of the weight as:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
1
2

𝑤𝑇𝑤 + 𝐶
𝑁

∑
𝑗 = 1

(𝜁 ‒
𝑗 + 𝜁 +

𝑗 )

{(𝑤.∅(𝑥𝑖) + 𝑏) ‒ 𝑦𝑖 ≤ 𝜀 + 𝜁 ‒
𝑗

𝑦𝑖 ‒ (𝑤.∅(𝑥𝑖) + 𝑏) ≤ 𝜀 + 𝜁 +
𝑗

𝜁 +
𝑗 .𝜁 ‒

𝑗 ≥ 0 .  𝑖 = 1.2….𝑚 �
(2)

where, the transpose operator presented by T, the error tolerance represented by ε, C related to 

the positive regularization which is responsible for describing the variance of different 

parameters such as ε, , and . The latest parameters show the lower and higher additional 𝜁 +
𝑗 𝜁 ‒

𝑗

variations, respectively. Construction of the Lagrange multipliers, the above-constrained 
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optimization issue becomes a dual function that leads to the final solution, which is presented as 

follows:

𝑦 = 𝑓(𝑥) =
𝑛

∑
𝑖 = 1

(𝑎𝑖 ‒ 𝑎 ∗
𝑖 ).𝐾(𝑥𝑖. 𝑥) + 𝑏 (3)

herein, the kernel function represented by . In addition, the Lagrange multipliers indicated 𝐾(𝑥𝑘,𝑥𝑙)

by , and .𝑎𝑘  𝑎 ∗
𝑘

S1.4. Random Forest (RF) 

The decision tree is a helpful machine learning technique. However, it has two flaws. First, while 

the prediction bias of the decision tree is usually low, the prediction variance may be high 

because it is sensitive to minor perturbations in the training dataset; second, while the dividing 

rule for each node is suitable, as shown in the previous section, this greedy method cannot assure 

that the decision tree is preferable. By sequentially training numerous trees and transforming 

several weak classifiers to strong classifiers, ensemble techniques can alleviate these two 

difficulties. A random forest is made up of a collection of different decision trees that are all 

being trained at the same time. The algorithm determines the superiority and relevance of each 

decision tree. 7. Furthermore, a built-in attribute of the RF classifier, which is used to pick 

distinct features, allows the RF to manage various inputs features without the requirement to 

remove a number of parameters for data preprocessing. 8. The RF methodology uses an approach 

known as Bagging in the modelling to increase the diversity of trees in the forest (which stands 

for bootstrap aggregating). Typically, the model is provided with the population of trees as an 

input, and the model divides data points into distinct groupings as a result. Bagging is a form of 

random sampling approach that uses just a third of the data points in the training step of the 

subtree construction process, with the other data points getting regarded to as the out-of-bag data 

(OOB). Furthermore, cross-validation of findings is not necessary in the RF during model 

construction since the correctness of the model can be assessed using the OOB's mistakes 46. 

The RF technique strategy is depicted in Figure 2. If the model is provided with a training dataset 

as a prerequisite, the training procedure will be effective.

 if in this form is a training data,  for the prescribed training dataset 𝐷 = [(𝑥1.𝑦1).(𝑥2.𝑦2). ∙∙∙ (𝑥𝑛.𝑦𝑛)] 𝐷𝑡

for tree , and   for the resultant estimate of the out-of-bag dataset of sample x, as follows:ℎ𝑡 𝐻𝑜𝑜𝑏
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𝐻𝑜𝑜𝑏(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥

𝑇

∑
𝑡 = 1

𝐼(ℎ𝑡(𝑥)) = 𝑦

The OOB dataset's inaccuracy is simplified as follows for modelling purposes:

                                                                                   
𝜀𝑜𝑜𝑏(𝑥) =

1
|𝐷| ∑

(𝑥.𝑦)𝜖𝐷

𝐼(𝐻𝑜𝑜𝑏(𝑥) ≠ 𝑦)

The functioning of the RF should be random and unsystematic, and this aspect is regulated by 

the parameter  9. The following phrase may be used to determine the relevance of a 𝑘 = 𝑙𝑜𝑔2𝑑

property of a variable Xi:

                                                                                             
𝐼(𝑋𝑖) =

1
𝐵

𝐵

∑
𝑡

̃𝑂𝑂𝐵𝑒𝑟𝑟
𝑡𝑖 ‒ 𝑂𝑂𝐵𝑒𝑟𝑟𝑡

Correspondingly, the ith factor is denoted by  in the X vector, B represents the number of trees 𝑋𝑖

in the current RF, ,which remains for the feature Xi of tree t, and the initial OOB data 
̃𝑂𝑂𝐵𝑒𝑟𝑟

𝑡𝑖

samples are given as , which contains the subset variables, and the estimated error of the 𝑂𝑂𝐵𝑒𝑟𝑟𝑡

OOB samples is described by .
̃𝑂𝑂𝐵𝑒𝑟𝑟

𝑡𝑖

Figure S1. A schematic illustration of random forest algorithm.

S1.5. Extra Tree
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Geurts et al. were the first for the suggestion of extra trees (ETs),10 which consists of adding a 

random layer to decision trees. When the training procedure is over, the stated layer will be 

inserted into the node. As a result, the time spent looking for the optimal cut-points will be 

considerably reduced, as a collection of randomly determined threshold values will be used 

instead of cutting points. Furthermore, by employing this method, scientists may minimize the 

volume of data storage space necessary, resulting in a better and faster training process. A 

significant disadvantage of this strategy is the increase in the size of the forest. Geurts and his co-

workers compared ET to other alternative techniques such as random decision forests and 

represented in a previous study.10 Based on the results of the comparisons, it was determined that 

ETs can not only perform as well as other approaches but also, in certain situations, even 

outperform them. It's also worth mentioning that recognized ETs have lower final variance. As a 

result, it has been acknowledged that the ETs are impressively resilient to a collection of noisy 

training data.

Figure S2. SEM image and the corresponding EDS maps of FeCoNiCu-MEO.
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Figure S4. Particle size distribution of FeCoNiCu-MEO.
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Table S1. Aerobic and solvent-free oxidation of toluene at different reaction conditions.

Selectivity (%)
Entry† Catalyst T 

(˚C)
P 
(atm)

Conversion 
(%) BAl BAd BAc BBz

1 None 100 5 0.01 5.1 80.5 14.4 0.0
2 None 125 5 0.01 10.2 73.3 15.1 1.4
3 None 150 5 0.02 18.4 67.8 12.2 1.6
4 None 100 10 0.05 15.3 81.2 3.5 0.0

5 None
None a, b 125 10 0.11

0.13a, 0.13b
12.3
10.6 a, 11.3 b

80.4
78.9 a, 76.3 b

6.4
9.1 a, 12.1 b

0.9
1.4 a, 0.3 b

6 None 150 10 0.17 16.4 75.2 7.9 0.5
7 None 100 15 0.13 13.5 77.6 8.9 0.0

8 None
None a, b 125 15 0.14

0.18a, 0.21b
11.2,
10.2a, 9.3b

79.6
78.3a, 71.2b

9.2
9.1a, 17.6b

0.0
2.4a, 1.9b

9 None 150 15 0.21 15.2 81.5 2.9 0.4
10 MEO e 100 5 0.21 25.3 73.4 1.3 0.0
11 MEO e 125 5 0.27 12.7 84.6 2.5 0.2
11 MEO e 150 5 0.35 15.3 69.7 12.4 2.6
12 MEO e 100 10 1.24 21.1 75.3 3.6 0.0

MEO e
MEO a, b 125 10 4.15

4.50a, 5.12 b
16.3
15.3 a, 14.0 b

78.3
75.8 a, 71.3b

4.5
4.3 a, 8.6 b

0.9
4.6a, 6.1 b13

MEO 125 10 13.1 13.5 66.4 16.7 3.4
14 MEO e 150 10 5.51 15.6 72.5 8.6 3.3
15 MEO e 100 15 2.31 21.3 70.3 5.6 2.8
16 MEO e 125 15 4.89 15.2 75.8 6.1 2.9
17 MEO e 150 15 5.77 14.2 78.6 5.4 1.8

rGO f 125 10 2.04 9.3 77.2 11.4 2.118 rGO 125 10 2.81 8.7 76.7 8.4 6.2
19 rGO f 150 10 2.23 13.5 75.8 9.3 1.4
20 rGO f 125 15 2.27 10.4 81.3 6.8 1.5
21 rGO f 150 15 2.56 8.1 78.5 12.2 1.2
22 MEO@rGO 100 10 6.7 12.6 87.2 0.2 0.0

23 MEO@rGO
MEO@rGO a, b, c, d 125 10

12.6
14.2a, 17.5 

b, 15.6 c, 
18.2 d

3.1
3.6a,, 4.2 b, 
2.9c, 3.4 d

94.7
94.0 a, 92.5 

b, 93.5 c, 
92.1 d

1.7
1.5 a, 2.7b, 
2.5 c, 3.3 d

0.5
0.9 a,0.6 b, 
1.1 c, 1.2 d

24 MEO@rGO 

MEO@rGO a, b, c, d 150 10

13.8
15.4a, 18.7 

b, 14.6 c, 
16.7 d

4.0
4.3a,, 4.8b, 
4.5c, 5.1 d

93.4
91.5 a, 90.3 

b, 91.9 c, 
.89.2 d

1.5
3.5 a, 4.1b, 
2.6 c, 4.2 d

1.1
0.7 a,0.8 b, 
1.0 c, 1.5 d

25 MEO@rGO 100 15 7.8 8.7 86.2 4.5 0.6
26 MEO@rGO 125 15 13.4 3.7 92.1 3.8 0.4
27 MEO@rGO 150 15 15.8 6.2 87.4 5.9 0.5

†Typical oxidation reaction conditions: 3 ml of toluene, 0.04 g catalyst  (actual weight ratio of 

rGO to MEO  in the resultant nanocomposite is 10 to 4), stirring rate of 500 rpm, 4 h under 

specific air pressure. a 6h , b 8h , c 0.06 g, d 0.1 g, e the amount of MEO used in this case is equal to 

the amount of ratio used in the rGO@MEO (0.016 g), f the amount of rGO used in this case is 

equal to the amount of ratio used in the rGO@MEO (0.024 g). BAl: benzyl alcohol, BAd: 

benzaldehyde, BAc: benzoic acid, and BBz: benzyl benzoate. 
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Table S2.  Comparison of the catalytic performance of MEO@rGO catalyst with reported studies in the literature.

Catalyst Temperature (°C) Pressure (atm) Time (h) Conversion 
(%)

Selectivity to 
benzaldehyde 

(%)

Reference

Au@Silicalite-1 160 10 24 10.7 90.5 11

Fe2O3/HZSM-5 90 H2O2 4 15.6 52.2 12

Carbon 160 10 7 0.1 72.6 13

Au/C 160 10 7 0.2 81.9 13

Au-Pd/C 160 10 7 0.3 57.6 13

Pd/C 160 10 7 1.6 56.4 13

mpg130 160 10 16 8.5 66 14

SBA-15 180 10 1 2.4 56.8 15

T(p-Cl)PPMnCl 100 1 8 6.44 51.9 16

Table S3. Atomic composition of the used MEO@rGO catalyst after 5 times recycling experiments asd etermined 

by ICP-MS.

Element Fe(%) Co(%) Ni(%) Cu(%)

MEO@rGO 4.58 4.15 4.52 3.92
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Figure S5. XRD patterns of MEO@rGO after the catalytic test.



S11



S12

Figure S6.  Gas chromatography spectra of the pure toluene (Initial) and selected samples related to Table 3: MEO_4 h_0.04 g 

(4), rGO_4 h_0.04 g (8), MEO@rGO_4 h_0.04 g (12), MEO@rGO_6 h_0.04 g (13), MEO@rGO_8 h_0.04 g (14), 

MEO@rGO_4 h_ 0.06 g (15), MEO@rGO_8 h_0.1 g (16).
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