Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. Electronicasispolementary Materialy (ESI) for isournal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

> Supplementary Information For Journal of Materials Chemistry A

Synergistic Effect of Two Hydrochlorides Boosting 3D to

Quasi-2D Tin-Based Perovskite Solar Cells with

Significantly Enhanced Performance

Tianhao Li^{a#}, Yangyang Wang^{a#}, Weiya Zhu^b, Qianxi Dang^a, Yiheng Zhang^b, Yuan Li^{b*} and Xianyu Deng^{a*}

^a Shenzhen Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, China.

Email: xydeng@hit.edu.cn

^b State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, 381, Wushan Road, Guangzhou, 510641, China.

E-mail: celiy@scut.edu.cn

[#]T.L. and W. Y.Y. contributed equally to this work.

Fig. S1. (a) The progress of the Sn-based perovskite film via a one-step spin-coating method with antisolvent dripping. (b) Device structure of the 2D Sn-based PVSCs.

Fig. S2. Image of the precursor solution with different additives exposed in air for different time (the solution on the bottle wall can be considered as a mark to prove that the bottle has not moved during the shooting). The solution were marked as Sample 1: control solution; Sample 2: solution with DEACl; Sample 3: solution with HMCl; Sample 4: solution with HMCl and DEACl.

Fig. S3. Images of $FASnI_3$ solution. (a) $FASnI_3$ solution added with SnF_2 . (b) solution exposed in air for 4 h. Add DEAC1 to the oxidized precursor solution and shake for (c) 10 s and (d) 1 min.

Fig. S4. Images of FASnI₃ solution. (a) The FASnI₃ solution added with SnF_2 . (b) The solution exposed in air for 4 h. The oxidized precursor solution after adding HMCl and shaking for (c) 10 s and (d) 1 min.

Fig. S5. 3D schematic diagram of the transformation of FASnI₃ crystal in air environment.

Fig. S6. XPS Sn 3d spectra of corresponding films (a) without additives, (b) with addition of 20% HMCl, and (c) with addition of 20% HMCl and 20% DEACl. The two peaks deconvoluted from the measured spectra at 486.5 and 487.5 eV are associated with Sn^{2+} and Sn^{4+} , respectively. The etching time is 30 s.

Fig. S7. SEM images of the Sn-based perovskite films with different amounts of HMCl. (a) without HMCl. (b) with 10% HMCl added. (c) with 20% HMCl added. (d) with 30% HMCl added. (e) XRD patterns of the Sn-based films, the control film (FASnI₃ film with 0.1M SnF₂), and the film with 0.2M HMCl added. (f) *J-V* curves of Sn-based devices containing different amounts of HMCl.

Fig. S8. (a) Absorption spectrum of the different films. (b) Tauc plot of Sn-based perovskite films with different additive (Photo energy are 1.33eV, 1.36 eV, 1.42 eV, respectively).

Fig. S9. J-V curves of Sn-based devices with and without DEACl.

Fig. S10. *J-V* curves of Sn-based devices containing HMCl with different large cations additive.

Fig. S11. (a) Dark *J-V* curves of the control, with addition of HMCl, and with addition of HMCl and DEACl devices (b) J_{SC} -*T* curves of the device with different additives under 1.5 G irradiation.

Year	Structure	Author	Journal	PCE (%)
2017	2D based BA^+	Mercouri G. Kanatzidis	ACS Energy Lett.	2.37
2017	2D based PEA ⁺	Zhijun Ning	JACS	5.94
2018	2D-3D hybrid	Maria Antonietta Loi	Adv. Energy Mater.	9
2018	2D-3D hybrid	Zhijun Ning	Joule	9.41
2019	2D based AVA $^+$	Mingjian Yuan	Adv. Funct. Mater.	8.71
2020	2D based BA^+	Mingzhen Liu	ACS Energy Lett.	4.04
2021	3D	Zhijun Ning	J. Am. Chem. Soc	14.6
2021	2D-3D	Zhubing He	Adv. Mater.	14.8
2022	2D based DEA^+	This work		9.47

Table S1. The development of 2D tin-based perovskites in recent years

 Table S2. Device parameters of Sn-based perovskite films adding with different content HMCl.

Sample	J_{SC} (mA/cm ²)	$V_{OC}(\mathbf{V})$	FF (%)	PCE (%)
Control	15.3	0.31	48.28	2.29
10% HMCl	21.6	0.362	62.02	4.85
20% HMCl	22.7	0.396	66.22	5.95
30% HMCl	20.11	0.378	61.30	4.66

Table S3. Fitted TRPL parameters of Sn-based perovskite film with different additives.

Sample	τ_1 (ns)	$\tau_2(ns)$
Control	2.14	7.43
With HMCl	5.21	9.67
With HMC1&DEAC1	7.92	16.32

 Table S4. Device parameters of Sn-based perovskite solar cells with and without adding DEACl.

Sample	J_{SC} (mA/cm ²)	$V_{OC}(\mathbf{V})$	FF (%)	PCE (%)
Control	15.3	0.31	48.28	2.29
With DEACl	14.39	0.493	51.71	3.67

Table S5. The corresponding parameters of trap concentration and carrier mobility of perovskite films with different additives.

Sample	$V_{TFL}(\mathbf{V})$	N_{trap} (cm ⁻³)	$\mu ({ m cm}^{-2}{ m V}^{-1}{ m S}^{-1})$
Control Film	0.321	6.44×10 ¹⁵	1.2524×10 ⁻⁴
With HMCl	0.0912	1.242×10^{15}	1.0043×10 ⁻³
With HMCl&DEACl	0.0644	1.126×10 ¹⁵	4.4581×10 ⁻³

Table S6. The electrostatic potential (ESP) parameters of DEA⁺, BA⁺ and PEA⁺ calculated by density functional theory (EFT).

Sample	MPI (eV)	Volume (Å)	Minima ESP (eV)	Maxima ESP
				(ev)
DEA^+	4.61911	123.61614	3.571654	6.511710
BA^+	4.46498	123. 81487	2.477844	6.933499
PEA ⁺	3.86253	173.53287	1.907838	6.851608