SUPPORTING INFORMATION

Electrocatalytic Valorization of 5-Hydroxymethylfurfural Coupling with Hydrogen Production by Tetraruthenium-Containing Polyoxometalate-based Composite

Hui Zhou,^a Yuanyuan Dong,*^a Xing Xin,^a Manzhou Chi,^a Tinglu Song,^b and Hongjin Lv*^a

^a MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China. ^b Experimental Center of Advanced Materials School of Materials Science & Engineering , Beijing Institute of Technology.

Table of content

1. Figure S1-S13

Figure S1. Optical photo of the aqueous solution of the Ru_4 -containg residue after TG
analysis3
Figure S2. SEM image of Ru ₄ /PEI-rGO
Figure S3. Energy-dispersive X-ray (EDX) elements analysis of Ru ₄ /PEI-rGO
Figure S4. The survey XPS spectra of Ru ₄ and Ru ₄ /PEI-rGO4
Figure S5. HPLC spectra of the anode oxidation products for Ru ₄ /PEI-rGO
electrocatalysts4
Figure S6. GC spectra of air and the gas products at anode chambers for rGO and PEI-
rGO electrocatalysts5
Figure S7. The electrocatalytic activities of Ru ₄ /PEI-rGO with the variation in the
amount of Ru ₄ 5
Figure S8. CV curves of \mathbf{Ru}_4 homogeneous aqueous solution in pH 6 without and with
HMF6

Figure S9. CV curves of Ru_4 homogeneous aqueous solution in pH 4 without and with
HMF6
Figure S10. CV curves of Ru_4 homogeneous aqueous solution in pH 8 without and
with HMF7
Figure S11. The high resolution (a) C 1s + Ru 3d, (b) O 1s XPS spectra of fresh
Ru ₄ /PEI-rGO electrocatalyst7
Figure S12. The high resolution Ru 3p XPS spectra of Ru ₄ /PEI-rGO after reaction over
6 h at applied voltage of 0.6 V and 0.8 V at pH 6 electrolyte aolution, and pH 4 and pH
8 electrolyte at 0.94 V. ·····8
Figure S13. The plots of the conversion of HMF and the yields of furanic products
versus the electrolysis time at applied voltage of 0.94 V under pH 6 electrolyte solution
with 0.6 eq. TEMPO additive
Figure S14. I-t response curve for Ru ₄ /PEI-rGO electrocatalyst at applied voltage of
0.94 V for 12 hours under pH 6 electrolyte solution9
Figure S15. SEM and TEM images of Ru ₄ /PEI-rGO after bulk electrolysis for 12 hours.

2. Table S1-S2

Table S1. The electrocatalytic activities of Ru_4 /PEI-rGO catalysts with the different
amount of PEI9
Table S2. The electrocatalytic activities of Ru_4 /PEI-rGO catalysts with the different
loading quantity of the composite electrocatalyst onto carbon cloth10
Table S3. Comparation of the electrocatalytic oxidation of HMF to DFF using different
noble metal-based electrocatalysts10

1. Figure S1-S13

Figure S1 Optical photo of the aqueous solution of the Ru₄-containg residue after TG analysis.

Figure S2 SEM image of Ru₄/PEI-rGO.

Figure S3 Energy-dispersive X-ray (EDX) elements analysis of Ru₄/PEI-rGO.

Figure S4 The survey XPS spectra of \mathbf{Ru}_4 and \mathbf{Ru}_4 /PEI-rGO.

Figure S5 HPLC spectra of the anode oxidation products for Ru₄/PEI-rGO electrocatalysts.

Figure S6 GC spectra of air and the gas products at anode chambers for rGO and PEI-rGO electrocatalysts.

Upon 6-hour bulk electrocatalysis for rGO and PEI-rGO, the gaseous products at the anode chambers was tested using GC. The results indicated that there were large amount of CO_2 and small amount of CO/CH_4 , which fully confirmed the deep mineralization of HMF during bulk electrocatalysis for rGO and PEI-rGO electrocatalysts.

Figure S7 The electrocatalytic activities of Ru₄/PEI-rGO with the variation in the amount of Ru₄.

The amounts of \mathbf{Ru}_4 for \mathbf{Ru}_4 /PEI-rGO electrocatalysts were determined by ICP. With the amount of \mathbf{Ru}_4 increasing, the conversion of HMF and the selectivity of oxidation products displayed the shape of volcano. The optimized amount of \mathbf{Ru}_4 is 0.03 µmol, corresponding to the concentration of \mathbf{Ru}_4 aqueous solution of 1 mg/mL during the preparation described in experimental section.

Figure S8 CV curves of Ru₄ homogeneous aqueous solution in pH 6 without and with HMF.

Figure S9 CV curves of **Ru**₄ homogeneous aqueous solution in pH 4 without and with HMF.

Figure S10 CV curves of Ru₄ homogeneous aqueous solution in pH 8 without and with HMF.

Figure S11 The high resolution (a) C 1s + Ru 3d, (b) O 1s XPS spectra of fresh **Ru₄**/PEI-rGO electrocatalyst.

Figure S12 The high resolution XPS spectra of \mathbf{Ru}_4 /PEI-rGO after reaction over 6-hour at applied voltage of (a) 0.6 V and (b) 0.8 V at pH 6 electrolyte aolution, and (c) pH 8 and (d) pH 4 electrolyte at 0.94 V.

Figure S13 The plots of the conversion of HMF and the yields of furanic products versus the electrolysis time at applied voltage of 0.94 V under pH 6 electrolyte solution with 0.6 eq. TEMPO additive.

Figure S14 I-t response curve for **Ru**₄/PEI-rGO electrocatalyst at applied voltage of 0.94 V for 12 hours under pH 6 electrolyte solution.

Figure S15 SEM (a) and TEM (b-c) images of Ru₄/PEI-rGO after bulk eletrolysis for 12 hours.

2. Table S1-S2

C_{PEI}^{a}	HMF	HMFCA		D	FF	FFG	CA	FDCA	
(mg/mL)	Con.	Yie.	Sel.	Yie.	Sel.	Yie.	Sel.	Yie.	Sel.
0	16.4%	0.80%	4.90%	3.66%	22.39%	1.88%	11.48%	0.36%	2.18%
4	22.4%	1.26%	5.62%	3.46%	15.49%	1.56%	6.97%	0.24%	1.07%
10	13.0%	0.63%	4.86%	0.99%	7.57%	0.40%	3.07%	-	-
50	5.2%	0.38%	7.32%	1.52%	29.12%	0.22%	4.26%	-	-

Table S1 The electrocatalytic activities of \mathbf{Ru}_4 /PEI-rGO catalysts with the different amount of PEI.

Conditions: 0.5 M HAC/NaAc buffer solution (pH 6, 40 ml), HMF (5 mM), \mathbf{Ru}_4 /PEI-rGO catalysts (0.5 mg) with different amount of PEI, reaction time (2 h), applied potential at 1.5 V vs RHE. ^a The original concentration of the PEI aqueous solution used in the \mathbf{Ru}_4 /PEI-rGO catalyst preparation process.

Cat. ^a	HMF	HMFCA		DFF		FFCA		FDCA	
(mg)	Con.	Yie.	Sel.	Yie.	Sel.	Yie.	Sel.	Yie.	Sel.
0.25	31.5%	0.3%	1.0%	2.3%	7.3%	0.5%	1.6%	-	-
0.37	33.6%	0.3%	1.0%	5.9%	17.4%	1.4%	4.2%	0.1%	0.2%
0.50	50.8%	0.4%	0.7%	33.6%	66.2%	14.4%	28.3%	0.1%	0.3%
0.62	35.7%	0.3%	1.0%	7.2%	20.2%	2.1%	5.8%	0.1%	0.4%
0.75	42.1%	0.5%	1.2%	16.1%	38.2%	6.2%	14.8%	0.3%	0.7%
1.00	36.3%	0.5%	1.6%	8.2%	22.5%	2.8%	7.6%	0.2%	0.5%

Table S2 The electrocatalytic activities of \mathbf{Ru}_4 /PEI-rGO catalysts with the different loading quantity of the composite electrocatalyst onto carbon cloth.

Conditions: 0.5 M HAc/NaAc buffer solution (pH 6, 20 ml), HMF (5 mM), **Ru**₄/PEI-rGO catalyst, reaction time (6 h), applied potential at 1.5 V vs RHE. ^a The amount of catalyst used in the electrocatalytic experiment, corresponding to the volumes of **Ru**₄/PEI-rGO catalyst ink supported by carbon cloth are 50, 75, 100, 125, 150, 200 μL.

Table S3 Comparation of the electrocatalytic oxidation of HMF to DFF using different noble metal-based electrocatalysts.

Catalyst	Conditions	Potential (V vs. RHE)	HMF (mM)	HMF Con. (%)	DFF Yie./Sel. (%)	Reaction time (h)	Ref.
Ru₄ /PEI-rGO	0.5 М рН=6 NaAc/HAc	1.50	5	50.8	33.6/66.2	6	This work
PtRu	0.1 M H₂SO _{4,} 50°C	1.6 V vs. SHE	100	25.0	22.3/89.0	17	[1]
Pt/Fe ₃ O ₄ /rGO	0.1 M K ₂ SO ₄	0.85 V vs. Ag/AgCl	0.5	7.2	6.8/94.4	20	[2]
Pt	1 M H ₂ SO _{4,} 60°C	2.00	20	88.3	13.1/14.8	100 C passed	[3]
Pb modified- Pt	0.1 M NaOH	0.90	10	100.0	50.4/80.0	2000 C passed	[4]
Pt foil	0.1 M NaOH	2.10	10	70.0	18.0/25.7	12	[5]

References

- [1] T. Cao, M. Wu, V. V. Ordomsky, X. Xin, H. Wang, P. Métivier, M. Pera-Titus, *ChemSusChem* 2017, 10, 4851-4854.
- [2] C. Zhou, W. Shi, X. Wan, Y. Meng, Y. Yao, Z. Guo, Y. Dai, C. Wang, Y. Yang, *Catalysis Today* 2019, 330, 92-100.
- [3] S. R. Kubota, K.-S. Choi, ChemSusChem 2018, 11, 2138-2145.
- [4] K. B. Kokoh, E. M. Belgsir, Tetrahedron Letters 2002, 43, 229-231.
- [5] K. R. Vuyyuru, P. Strasser, Catalysis Today 2012, 195, 144-154.