Supplementary Information

Photoexcited charge manipulation in conjugated polymers bearing a Ru(II) complex catalyst for visible-light CO₂ reduction

Akinobu Nakada, *^{a,b} Ryuichi Miyakawa,^a Ren Itagaki,^a Kosaku Kato,^c Chinami Takashima,^d

Akinori Saeki,^e Akira Yamakata,^c Ryu Abe,^f Hiromi Nakai,^{d,g,h} and Ho-Chol Chang*a

^{*a*}Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.

^bPrecursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.

^{*c*}Graduate School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempakuku, Nagoya 468-8511, Japan.

^{*d*}Waseda Research Institute for Science and Engineering (WISE) and Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan.

^eDepartment of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.

¹Department of Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.

^gWaseda Research Institute for Science and Engineering (WISE), Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan.

^hElements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan.

*E-mail: nakada@scl.kyoto-u.ac.jp (A.N.), chang@kc.chuo-u.ac.jp (H.C.)

Phone: +81-75-383-7044. Fax: +81-75-383-2479.

Table of Contents

- p.3 Fig. S1 MALDI-TOF-MS spectra of [X-bpy]_n
- p.4 Fig. S2-S4 ATR-IR spectra of [X-bpyM]_n and its model monomers
- p.5 Fig. S5, S6 SEM images and XRD patterns of [X-bpyRu]_n
- p.6 Fig. S7 ATR-IR spectra of [Cz-bpyM]_n synthesized by different procedure
- p.7 Fig. S8 UV-vis DRS and absorption spectra of model monomers
- p.8 Table S1 Calculated charge distributions of X-bpyRu
- p.9 Fig. S9 ATR-IR spectra of [Cz-bpyRu]_n before and after photocatalytic reaction
- p.10 Fig. S10 Photocatalytic activities of [X-bpyRu]_n for CO₂ reduction

Fig. S1 MALDI-TOF-MS spectra of $[X-bpy]_n$ (X = (a) Cz, (b) Ph, or (c) Bt).

Fig. S2 ATR-IR spectra of $[Cz-bpyM]_n$ (M = (a) none or (b) Ru), (c) 2,2'-bipyridine, (d) 9-phenylcarbazole, and (e) Ru(bpy)(CO)_2Cl_2.

Fig. S3 ATR-IR spectra of [**Ph-bpyM**]_{*n*} (M = (a) none or (b) Ru), (c) 2,2'-bipyridine, (d) benzene, and (e) Ru(bpy)(CO)₂Cl₂.

Fig. S4 ATR-IR spectra of $[Bt-bpyM]_n$ (M = (a) none or (b) Ru), (c) 2,2'-bipyridine, (d) 2,1,3-benzothiadiazole, and (e) Ru(bpy)(CO)₂Cl₂.

Fig. S5 SEM images of $[X-bpyRu]_n$ (X = (a) Cz, (b) Ph, or (c) Bt).

Fig. S6 XRD patterns of $[X-bpyRu]_n$ (X = (a,b) Cz, (c,d) Ph, or (e,f) Bt) in ranges of (a,c,e) 3-5 degree and (b,d,f) 5-60 degree.

Fig. S7 ATR-IR spectra of (a) $[Cz-bpyRu]_n$, which is synthesized from $Ru(Br_2bpy)(CO)_2Cl_2$ and $Cz-(B(OR)_2)_2$, and (b) $Ru(bpy)(CO)_2Cl_2$.

Fig. S8 UV-vis DRS of 2,2'-bipyridine (black), 9-phenylcarbazole (red), 2,1,3-benzothiadiazole (green), and UV-vis absorption spectrum of benzene in MeCN (blue).

	Cz-bpyRu			Ph-bpyRu			Bt-bpyRu		
	\mathbf{S}_0	T_1	Δ	\mathbf{S}_0	T_1	Δ	\mathbf{S}_0	T_1	Δ
X	0.072	0.129	0.057	0.051	0.051	-0.001	0.019	-0.002	-0.021
bpyM	-0.072	-0.129	-0.057	-0.051	-0.051	0.001	-0.019	0.002	0.021

Table R1. Charge distributions of **X-bpyRu** (X = Cz, Ph, and Bt) in the S₀ and T₁ states obtained by Mulliken population analysis. Δ represents the deviations of the T₁ values from the S₀ ones.

Fig. S9 ATR-IR spectra of $[Cz-bpyRu]_n$ (a) before and (b) after photocatalysis at $\lambda > 400$ nm for 12 h.

Fig. S10 Photocatalytic activities of **[X-bpyRu]**_{*n*} for formate formation under a CO₂ atmosphere upon irradiation at $\lambda > 400$ nm (red) or $\lambda = 430$ nm (gray). 2 mg of each photocatalyst powder in an MeCN-TEOA (2 mL; 4:1 ν/ν) dispersion was irradiated for 12 h.