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Table S1. Summary of various Schottky DC energy generators

Types Active layers
Peak voltage

(V)

Current Density

(µA cm-2)
Refs

Al tip/n-type Si 0.60 4000 1

Graphene/n-type Si 0.22 1.5 1

ITO/n-type Si 0.45 2.5 1

Al/n-type Si 0.60 4 1

Graphene/n-GaAs 0.12 0.14 1

ITO/n-GaAs 0.23 0.25 1

Al/n-GaAs 0.48 4.1 1

n-GaAs/SiO2/p-Si 3.1 100 2

MoS2/AlN/Si 5.1 11200 2

p-Si/n-GaAs 0.7 180 2

Pt/Ir-coated nano-sized tip on MoS2 0.007 108 3

C-AFM tip/InP - 2.3*105 4

C-AFM tip/Si - 2.9*107 5

Carbon aerogel/Si 2 20 6

n-type Si/p-type Si 0.31 5.8*10-2 7

Schottky diode/p-n 

junction (Sliding mode)

Au tip/ p-Si 0.32 3500 8
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Al/PPy/Au 0.70 62.4 9

Al/PEDOT/Au 0.87 49.0 9

Al/PANI/Au 1.0 33.6 9

Al/PPy/SnO2/Au 0.25 2.7 10

Al/SnO2/Au 0.08 0.38 10

Al/PPy/Al2O3/Au 0.006 0.004 10

Al/PPy/ZnO/Au 0.019 0.013 10

Al/PANI/SnO2/Au 0.14 0.47 10

Al/PEDOT/SnO2/Au 0.10 1.28 10

Al/PANI/Au (doped with HCl) 0.9 33.9 10

Al/PPy-GO/Au (doped with 1.6 wt% GO) 0.73 131.9 11

Al/PPy-TiO2/Au (doped with 11.35 wt% TiO2) 0.84 431.47 12

Al/PPy/Au (containing 10.49 wt% water) 1.01 197.84 This work

Schottky diode/p-n 

junction (Compression 

mode) 

Al/PPy/Au (doped with 0.66 wt% DMSO) 0.95 222.35 This work
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Table S2. Effect of moisture on the electrical output of nanogenerators

Nanogenerator 
type

Relative 
humidity (%) Effect Open-circuit 

voltage (V)
Short-circuit 
current (μA) Device structure (active layer) Ref

95 Positive effect 695.18 29.72 PTFE/PVA 13

95 Positive effect 330 16.6 Starch biofilm/PTFE 14

90 Positive effect 664 37 PVDF/PVA-LiCl film 15

90 Negative effect 67.5 13.9 PANI-Poly (ethylene-co-poly (vinyl alcohol)) 
composite nanofiber membranes/PTFE

16

90 Negative effect 42 2.95 Cellulose acetate/Polyurethane-NH2 nanofiber 
membranes/PVDF

17

80 Negative effect 130 15 Chitosan-glycerol film/PTFE 18

100 Negative effect 18 0.5 PTFE/FTO glass 19

Triboelectric 
nanogenerator

(contact-
separation 

mode)

99 Negative effect 14 3.7 Polyimide/GO paper 20

60 Positive effect 1.3 30.3 Al/ asymmetric graphene oxide /Al 21Triboelectric 
nanogenerator
(sliding mode) 90 Negative effect 26 0.4 Polyimide film/Cu foil 22

60 Negative effect 0.05 - Al/Al-doped ZnO nanowire arrays/Ti 23
Piezoelectric 

nanogenerator 60 Negative effect 0.21 - Al/Fe-doped ZnO nanowire arrays/Ti 24
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Fig. S1 SEM image and EDS mapping of elements C and N in polypyrrole. The upper right corner 
of EDS mapping of C is ascribed to adhesive carbon tape.
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Fig. S2 The power outputs and force-displacement curves of Schottky devices made of (a) PPy 
containing 10.49 wt% water (external resistor 5.6 kΩ) and (b) PPy containing 6.67 wt% water 
(external resistor 130 kΩ) device under one compression and decompression cycle (strain: 6%, 
compressing & releasing speed: 0.035 mm s-1). 

Schottky devices were connected with a resistor that matched the internal resistance to obtain the 
maximum output power. According to I-t curves, P-t curves can be obtained, as shown in Fig. S2. 
The electrical output can be calculated through the integral area under the P-t curve, using the 
equation:

          (1)𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 = ∫𝑃 𝑑𝑡 =  ∫𝐼(𝑡)2𝑅 𝑑𝑡

For the PPy containing 10.49 wt% water, one-cycle power was calculated as 4.36  10-5 J when 
(from the average of over eight cycles).  

The force-displacement curve (Fig. S2a) can be obtained from Instron Tensile Tester. The work of 
force can be calculated by the integral of the F-S curve. For the PPy containing 10.49 wt% water, 
the one-cycle of input mechanical energy calculated based on Fig. S2a was 2.05  10-4 J. 

Thus, the energy conversion efficiency of the Schottky DC generator can be estimated by the 
equation:

          (2)
𝜂 =

𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙

𝐸𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙
=

∫𝑃 𝑑𝑡

∫𝐹(𝑠) 𝑑𝑠
=

∫𝐼(𝑡)2𝑅 𝑑𝑡

∫𝐹(𝑠) 𝑑𝑠
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For the PPy device with high water content (10.49 wt%) under 6.0% strain, the device efficiency 
was 21.27%, which is over 90 times higher than that of the device with 6.67 wt% water content 
(0.22%, Fig. S2b). 
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Fig. S3 DSC curves for polypyrrole samples stored in different humidity environments.
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Fig. S4 FITR spectra for polypyrrole samples stored in different humidity environments. 
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Fig. S5 Current and voltage outputs of the PPy based Schottky devices stored in (a) 0% RH, (b) 
55% RH, (c) 70% RH and (d) 95% RH (strain: 6%, compressing & releasing speed: 0.035mm s-1, 
temperature: 20 °C).
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Fig. S6 Dependency of the current and power outputs on external resistances for PPy-based 
Schottky devices stored in different humidity environments.
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Fig. S7 I–V characteristics of the Schottky DC generators with different water content at (a) 6.0% 
strain and (b) 0.9% strain (inset: enlarge the display of the curves around the null point).
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Fig. S8 I–V characteristics of the Au/PPy-water/Au devices at the strain level of 6.0%.

We measured the resistance of the PPy device by sandwiching the PPy disc with two Au electrodes 
in between. The IV curve had a linear relationship because of the ohmic contact between PPy and 
Au. Based on the slope, the resistance in the thickness direction can be estimated. At 6.0% strain, 
the resistance values are 307.69 Ω, 171.23 Ω, 163.40 Ω, and 133.69 Ω for the PPy discs containing 
5.11 wt%, 6.67 wt%, 8.52 wt%, and 10.49 wt% water, respectively.
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Fig. S9 (a) TGA curve of PPy samples wrapped with wet tissues. (b) Voc and (c) Isc of the Schottky 
device (strain: 6.0%, compressing & releasing speed: 0.035mm s-1). (d) Force-displacement curves 
of PPy disc (inset: enlarged the display the curve of PPy containing 46.91wt% water)

The PPy discs were wrapped with well-wet tissues and kept at 20 °C for 5 hours to obtain samples 
with high water content. The water content estimated based on the TGA curve was 46.91 wt%. Fig. 
S9b and S9c show the Voc and Isc of the device. The open-circuit voltage reached 1.07 ± 0.07 V, 
and the short-circuit current outputs were as high as 485.06 ± 72.63 μA. However, the excess water 
content made the polypyrrole plate lose its mechanical properties, as shown in Fig. S9d. 



S-15

Fig. S10 TGA curve of PPy sample kept in 32% RH.
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Fig. S11 SEM images of pure PPy and PPy-DMSO (DMSO content: 15 wt%).
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Fig. S12 EDX spectrum of PPy and PPy-DMSO samples.

Table S3. EDS element S quantification results.

Samples DMSO in the reaction solution 
(wt% based on pyrrole)

Sulfur 
(wt%)

DMSO content in polypyrrole
(wt%)

PPy 0 0 0
5 0.06 0.15
10 0.18 0.44
15 0.27 0.66PPy-DMSO

20 0.36 0.88
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Fig. S13 XRD patterns of PPy and PPy-DMSO (DMSO content: 0.66 wt%).
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Fig. S14 FTIR spectra of pure PPy and PPy-DMSO (DMSO content: 0.66 wt%).

Fig. S14 shows the FTIR spectra of PPy and PPy-DMSO. The characteristic peaks at 771 cm−1 
correspond to C–H stretching, whereas bands at 1022 and 1087 cm−1 were assigned to =C–H in-
plane deformation vibration. The peaks at 1147 cm−1 corresponded to C–H in and out of plane 
deformations9,11,12. 
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Fig. S15 Changes in (a) voltage and (b) current outputs when the devices conditioned in 70% RH 
were transferred from a 32% RH environment.
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Fig. S16 Effect of DMSO content on electrical outputs of the PPy-DMSO devices with different 
DMSO contents in PPy (strain 6%, compressing & releasing speed: 0.035mm s-1, relative humidity: 
70% RH, temperature: 20 °C).
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Fig. S17 Short-circuit current and open-circuit voltage of PPy-DMSO devices with different DMSO 
contents in PPy: (a) 0.15 wt%, (b) 0.44 wt%, (c) 0.66 wt%, (d) 0.88 wt% (strain 6%, compressing & 
releasing speed: 0.035mm s-1, relative humidity: 70% RH, temperature: 20 °C).
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Fig. S18 Dependency of the current and power outputs on external resistances for PPy-DMSO 
devices with DMSO content of (a) 0.15 wt%, (b) 0.44 wt%, (c) 0.66 wt%, (d) 0.88 wt% in the PPys.
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Fig. S19 I–V curves of the PPy-DMSO devices at the strain levels of (a) 0.9% and (b) 6.0%. (c) 
Calculated Schottky barrier height under compression and without compression (relative humidity: 
70%, temperature: 20 °C).
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Fig. S20 TGA curves for PPy-DMSO samples after being stored at 70% RH for one week.

The PPy with different DMSO contents showed slightly different water contents, being 8.46 wt%, 
8.82 wt%, 9.28 wt%, and 9.46 wt% when PPy contained 0.15 wt%, 0.44 wt%, 0.66 wt%, and 0.88 
wt% DMSO, respectively. 
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Fig. S21 I–V characteristics of the Au/PPy-DMSO/Au at the strain 6.0% (relative humidity: 70%, 
temperature: 20 °C).

The resistance of the PPy-DMSO discs is 117.51 Ω, 138.89 Ω, 159.49 Ω, and 197.24 Ω for the PPy 
containing 0.15 wt%, 0.44 wt%, 0.66 wt%, and 0.88 wt% DMSO, respectively. 
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Fig. S22 (a) Nyquist plots and (b) equivalent circuit of PPy-based devices doped with different 
DMSO content within the frequency region of 1MHz to 100 Hz. (c) The fitted values of equivalent 
circuits (Chi-square was below 0.01).
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Fig. S23 Current output stability test result for the PPy-DMSO device (DMSO content: 0.66 wt%, 
cycles: 600 times, strain 6%, compressing & releasing speed: 0.035mm s-1, relative humidity: 70%, 
temperature: 20 °C).
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Fig. S24 (a) voltage and (b) current outputs of PPy-DMSO devices using the PPy-DMSO (post-
treatment method, strain: 6%, compressing & releasing speed: 0.035mm s-1, relative humidity: 70% 
RH, temperature: 20 °C).

PPy-DMSO was prepared by a post-treatment method. 20 ml 15 wt% DMSO was mixed with 5.0 g 
PPy powder. After 3 hours of stirring at room temperature, the powder was filtered out and dried at 
65 degrees for 24 hours. The dry powder was compressed into a disc and stored at 70% RH, 20 °C, 
for one week. 
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Supplementary Video  

Video S1: A video to show the lighting of a commercial LED powered by Schottky devices made 
of PPy-DMSO.
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