Effect of Water and DMSO on Mechanoelectrical Conversion of

Schottky DC Generators

Xiang Ding^a, Hao Shao^a, Hongxia Wang^a, Ruixi Bai^a, Jian Fang^b, Tong Lin^{c*}

a Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia b College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China c State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China

* Corresponding author's email: tong.lin@tiangong.edu.cn

Electronic Supplementary Information

Types	Active layers	Peak voltage (V)	Current Density (µA cm ⁻²)	Refs
	Al tip/n-type Si	0.60	4000	1
	Graphene/n-type Si	0.22	1.5	1
	ITO/n-type Si	0.45	2.5	1
	Al/n-type Si	0.60	4	1
	Graphene/n-GaAs	0.12	0.14	1
	ITO/n-GaAs	0.23	0.25	1
	Al/n-GaAs	0.48	4.1	1
Schottky diode/p-n	n-GaAs/SiO ₂ /p-Si	3.1	100	2
junction (Sliding mode)	MoS ₂ /AlN/Si	5.1	11200	2
	p-Si/n-GaAs	0.7	180	2
	Pt/Ir-coated nano-sized tip on MoS ₂	0.007	108	3
	C-AFM tip/InP	-	2.3*10 ⁵	4
	C-AFM tip/Si	-	$2.9*10^{7}$	5
	Carbon aerogel/Si	2	20	6
	n-type Si/p-type Si	0.31	5.8*10-2	7
	Au tip/ p-Si	0.32	3500	8

Table S1. Summary of various Schottky DC energy generators

	Al/PPy/Au (containing 10.49 wt% water) Al/PPy/Au (doped with 0.66 wt% DMSO)	1.01 0.95	197.84 222.35	This work This work
Schottky diode/p-n junction (Compression mode)	Al/PPy-TiO ₂ /Au (doped with 11.35 wt% TiO ₂)	0.84	431.47	12
	Al/PPy-GO/Au (doped with 1.6 wt% GO)	0.73	131.9	11
	Al/PANI/Au (doped with HCl)	0.9	33.9	10
	Al/PEDOT/SnO ₂ /Au	0.10	1.28	10
	Al/PANI/SnO ₂ /Au	0.14	0.47	10
	Al/PPy/ZnO/Au	0.019	0.013	10
	Al/PPy/Al ₂ O ₃ /Au	0.006	0.004	10
	Al/SnO ₂ /Au	0.08	0.38	10
	Al/PPy/SnO ₂ /Au	0.25	2.7	10
	Al/PANI/Au	1.0	33.6	9
	Al/PEDOT/Au	0.87	49.0	9
	Al/PPy/Au	0.70	62.4	9

Nanogenerator type	Relative humidity (%)	Effect	Open-circuit voltage (V)	Short-circuit current (μA)	Device structure (active layer)	Ref
Triboelectric nanogenerator (contact- separation mode)	95	Positive effect	695.18	29.72	PTFE/PVA	13
	95	Positive effect	330	16.6	Starch biofilm/PTFE	14
	90	Positive effect	664	37	PVDF/PVA-LiCl film	15
	90	Negative effect	67.5	13.9	PANI-Poly (ethylene-co-poly (vinyl alcohol)) composite nanofiber membranes/PTFE	16
	90	Negative effect	42	2.95	Cellulose acetate/Polyurethane-NH ₂ nanofiber membranes/PVDF	17
	80	Negative effect	130	15	Chitosan-glycerol film/PTFE	18
	100	Negative effect	18	0.5	PTFE/FTO glass	19
	99	Negative effect	14	3.7	Polyimide/GO paper	20
Triboelectric	60	Positive effect	1.3	30.3	Al/ asymmetric graphene oxide /Al	21
nanogenerator (sliding mode)	90	Negative effect	26	0.4	Polyimide film/Cu foil	22
Piezoelectric nanogenerator	60	Negative effect	0.05	-	Al/Al-doped ZnO nanowire arrays/Ti	23
	60	Negative effect	0.21	-	Al/Fe-doped ZnO nanowire arrays/Ti	24

 Table S2. Effect of moisture on the electrical output of nanogenerators

Fig. S1 SEM image and EDS mapping of elements C and N in polypyrrole. The upper right corner of EDS mapping of C is ascribed to adhesive carbon tape.

Fig. S2 The power outputs and force-displacement curves of Schottky devices made of (a) PPy containing 10.49 wt% water (external resistor 5.6 k Ω) and (b) PPy containing 6.67 wt% water (external resistor 130 k Ω) device under one compression and decompression cycle (strain: 6%, compressing & releasing speed: 0.035 mm s⁻¹).

Schottky devices were connected with a resistor that matched the internal resistance to obtain the maximum output power. According to I-t curves, P-t curves can be obtained, as shown in Fig. S2. The electrical output can be calculated through the integral area under the P-t curve, using the equation:

$$E_{electrical} = \int P \, dt = \int I(t)^2 R \, dt \tag{1}$$

For the PPy containing 10.49 wt% water, one-cycle power was calculated as 4.36×10^{-5} J when (from the average of over eight cycles).

The force-displacement curve (Fig. S2a) can be obtained from Instron Tensile Tester. The work of force can be calculated by the integral of the F-S curve. For the PPy containing 10.49 wt% water, the one-cycle of input mechanical energy calculated based on Fig. S2a was 2.05×10^{-4} J.

Thus, the energy conversion efficiency of the Schottky DC generator can be estimated by the equation:

$$\eta = \frac{E_{electrical}}{E_{mechanical}} = \frac{\int P \, dt}{\int F(s) \, ds} = \frac{\int I(t)^2 R \, dt}{\int F(s) \, ds}$$
(2)

For the PPy device with high water content (10.49 wt%) under 6.0% strain, the device efficiency was 21.27%, which is over 90 times higher than that of the device with 6.67 wt% water content (0.22%, Fig. S2b).

Fig. S4 FITR spectra for polypyrrole samples stored in different humidity environments.

Fig. S5 Current and voltage outputs of the PPy based Schottky devices stored in (a) 0% RH, (b) 55% RH, (c) 70% RH and (d) 95% RH (strain: 6%, compressing & releasing speed: 0.035mm s⁻¹, temperature: 20 °C).

Fig. S6 Dependency of the current and power outputs on external resistances for PPy-based Schottky devices stored in different humidity environments.

Fig. S7 I–V characteristics of the Schottky DC generators with different water content at (a) 6.0% strain and (b) 0.9% strain (inset: enlarge the display of the curves around the null point).

Fig. S8 I–V characteristics of the Au/PPy-water/Au devices at the strain level of 6.0%.

We measured the resistance of the PPy device by sandwiching the PPy disc with two Au electrodes in between. The IV curve had a linear relationship because of the ohmic contact between PPy and Au. Based on the slope, the resistance in the thickness direction can be estimated. At 6.0% strain, the resistance values are 307.69 Ω , 171.23 Ω , 163.40 Ω , and 133.69 Ω for the PPy discs containing 5.11 wt%, 6.67 wt%, 8.52 wt%, and 10.49 wt% water, respectively.

Fig. S9 (a) TGA curve of PPy samples wrapped with wet tissues. (b) V_{oc} and (c) I_{sc} of the Schottky device (strain: 6.0%, compressing & releasing speed: 0.035mm s⁻¹). (d) Force-displacement curves of PPy disc (inset: enlarged the display the curve of PPy containing 46.91wt% water)

The PPy discs were wrapped with well-wet tissues and kept at 20 °C for 5 hours to obtain samples with high water content. The water content estimated based on the TGA curve was 46.91 wt%. Fig. S9b and S9c show the Voc and Isc of the device. The open-circuit voltage reached 1.07 ± 0.07 V, and the short-circuit current outputs were as high as 485.06 ± 72.63 µA. However, the excess water content made the polypyrrole plate lose its mechanical properties, as shown in Fig. S9d.

Fig. S10 TGA curve of PPy sample kept in 32% RH.

Fig. S11 SEM images of pure PPy and PPy-DMSO (DMSO content: 15 wt%).

Fig. S12 EDX spectrum of PPy and PPy-DMSO samples.

Samples	DMSO in the reaction solution (wt% based on pyrrole)	Sulfur (wt%)	DMSO content in polypyrrole (wt%)
PPy	0	0	0
PPy-DMSO	5	0.06	0.15
	10	0.18	0.44
	15	0.27	0.66
	20	0.36	0.88

 Table S3. EDS element S quantification results.

Fig. S13 XRD patterns of PPy and PPy-DMSO (DMSO content: 0.66 wt%).

Fig. S14 FTIR spectra of pure PPy and PPy-DMSO (DMSO content: 0.66 wt%).

Fig. S14 shows the FTIR spectra of PPy and PPy-DMSO. The characteristic peaks at 771 cm⁻¹ correspond to C–H stretching, whereas bands at 1022 and 1087 cm⁻¹ were assigned to =C–H inplane deformation vibration. The peaks at 1147 cm⁻¹ corresponded to C–H in and out of plane deformations^{9,11,12}.

Fig. S15 Changes in (a) voltage and (b) current outputs when the devices conditioned in 70% RH were transferred from a 32% RH environment.

Fig. S16 Effect of DMSO content on electrical outputs of the PPy-DMSO devices with different DMSO contents in PPy (strain 6%, compressing & releasing speed: 0.035mm s⁻¹, relative humidity: 70% RH, temperature: 20 °C).

Fig. S17 Short-circuit current and open-circuit voltage of PPy-DMSO devices with different DMSO contents in PPy: (a) 0.15 wt%, (b) 0.44 wt%, (c) 0.66 wt%, (d) 0.88 wt% (strain 6%, compressing & releasing speed: 0.035mm s⁻¹, relative humidity: 70% RH, temperature: 20 °C).

Fig. S18 Dependency of the current and power outputs on external resistances for PPy-DMSO devices with DMSO content of (a) 0.15 wt%, (b) 0.44 wt%, (c) 0.66 wt%, (d) 0.88 wt% in the PPys.

Fig. S19 I–V curves of the PPy-DMSO devices at the strain levels of (a) 0.9% and (b) 6.0%. (c) Calculated Schottky barrier height under compression and without compression (relative humidity: 70%, temperature: 20 °C).

Fig. S20 TGA curves for PPy-DMSO samples after being stored at 70% RH for one week.

The PPy with different DMSO contents showed slightly different water contents, being 8.46 wt%, 8.82 wt%, 9.28 wt%, and 9.46 wt% when PPy contained 0.15 wt%, 0.44 wt%, 0.66 wt%, and 0.88 wt% DMSO, respectively.

Fig. S21 I–V characteristics of the Au/PPy-DMSO/Au at the strain 6.0% (relative humidity: 70%, temperature: 20 °C).

The resistance of the PPy-DMSO discs is 117.51 Ω , 138.89 Ω , 159.49 Ω , and 197.24 Ω for the PPy containing 0.15 wt%, 0.44 wt%, 0.66 wt%, and 0.88 wt% DMSO, respectively.

Fig. S22 (a) Nyquist plots and (b) equivalent circuit of PPy-based devices doped with different DMSO content within the frequency region of 1MHz to 100 Hz. (c) The fitted values of equivalent circuits (Chi-square was below 0.01).

Fig. S23 Current output stability test result for the PPy-DMSO device (DMSO content: 0.66 wt%, cycles: 600 times, strain 6%, compressing & releasing speed: 0.035mm s⁻¹, relative humidity: 70%, temperature: 20 °C).

Fig. S24 (a) voltage and (b) current outputs of PPy-DMSO devices using the PPy-DMSO (post-treatment method, strain: 6%, compressing & releasing speed: 0.035mm s⁻¹, relative humidity: 70% RH, temperature: 20 °C).

PPy-DMSO was prepared by a post-treatment method. 20 ml 15 wt% DMSO was mixed with 5.0 g PPy powder. After 3 hours of stirring at room temperature, the powder was filtered out and dried at 65 degrees for 24 hours. The dry powder was compressed into a disc and stored at 70% RH, 20 °C, for one week.

Supplementary Video

Video S1: A video to show the lighting of a commercial LED powered by Schottky devices made of PPy-DMSO.

References

- 1 S. Lin, Y. Lu, S. Feng, Z. Hao and Y. Yan, *Adv. Mater.*, 2019, **31**, 1804398.
- 2 Y. Lu, Z. Hao, S. Feng, R. Shen, Y. Yan and S. Lin, *iScience*, 2019, **22**, 58–69.
- J. Liu, A. Goswami, K. Jiang, F. Khan, S. Kim, R. McGee, Z. Li, Z. Hu, J. Lee and T. Thundat, *Nat. Nanotechnol.*, 2018, **13**, 112–116.
- 4 V. A. Sharov, P. A. Alekseev, M. S. Dunaevskiy, R. R. Reznik and G. E. Cirlin, *J. Phys. Conf. Ser.*, 2019, **1400**, 66055.
- 5 S. Ferrie, N. Darwish, J. J. Gooding and S. Ciampi, *Nano Energy*, 2020, 78, 105210.
- J. Liu, M. I. Cheikh, R. Bao, H. Peng, F. Liu, Z. Li, K. Jiang, J. Chen and T. Thundat, *Adv. Electron. Mater.*, 2019, **5**, 1900464.
- 7 R. Xu, Q. Zhang, J. Y. Wang, D. Liu, J. Wang and Z. L. Wang, *Nano Energy*, 2019, 66, 104185.
- ⁸ J. Liu, F. Liu, R. Bao, K. Jiang, F. Khan, Z. Li, H. Peng, J. Chen, A. Alodhayb and T. Thundat, *ACS Appl. Mater. Interfaces*, 2019, **11**, 35404–35409.
- 9 H. Shao, J. Fang, H. Wang, L. Dai and T. Lin, *Adv. Mater.*, 2016, 28, 1461–1466.
- 10 H. Shao, J. Fang, H. Wang, H. Zhou and T. Lin, J. Mater. Chem. A, 2017, 5, 8267–8273.
- 11 H. Shao, J. Fang, H. Wang, H. Niu, H. Zhou, Y. Cao, F. Chen, S. Fu and T. Lin, *Nano Energy*, 2019, **62**, 171–180.
- 12 X. Ding, H. Shao, H. Wang, W. Yang, J. Fang, D. Zhang and T. Lin, *Nano Energy*, 2021, **89**, 106367.
- W. Sun, N. Wang, J. Li, S. Xu, L. Song, Y. Liu and D. Wang, *Electrochim. Acta*, 2021, 391, 138994.
- 14 Q. Zhou, K. Lee, K. N. Kim, J. G. Park, J. Pan, J. Bae, J. M. Baik and T. Kim, *Nano Energy*, 2019, **57**, 903–910.
- D. Liu, J. Liu, M. Yang, N. Cui, H. Wang, L. Gu, L. Wang and Y. Qin, *Nano Energy*, 2021, 88, 106303.
- 16 S. Yan, J. Lu, W. Song and R. Xiao, *Nano Energy*, 2018, 48, 248–255.
- 17 J. Shen, Z. Li, J. Yu and B. Ding, *Nano Energy*, 2017, **40**, 282–288.
- 18 Y.-T. Jao, P.-K. Yang, C.-M. Chiu, Y.-J. Lin, S.-W. Chen, D. Choi and Z.-H. Lin, *Nano Energy*, 2018, **50**, 513–520.
- 19 H. Guo, J. Chen, L. Tian, Q. Leng, Y. Xi and C. Hu, ACS Appl. Mater. Interfaces, 2014, 6, 17184–17189.
- 20 F. Ejehi, R. Mohammadpour, E. Asadian, P. Sasanpour, S. Fardindoost and O. Akhavan, *Sci. Rep.*, 2020, **10**, 1–11.
- 21 J. Chen, P. He, T. Huang, D. Zhang, G. Wang, S. Yang, X. Xie and G. Ding, *Nano Energy*, 2021, **90**, 106593.
- 22 Y. Hu, X. Wang, H. Li, H. Li and Z. Li, *Nano Energy*, 2020, **71**, 104640.
- 23 W. Zang, W. Wang, D. Zhu, L. Xing and X. Xue, *RSC Adv.*, 2014, 4, 56211–56215.
- D. Zhu, Y. Fu, W. Zang, Y. Zhao, L. Xing and X. Xue, *Sensors Actuators B Chem.*, 2014, 205, 12–19.