Supplementary materials

Enhanced Acetylene Semi-hydrogenation on Subsurface Carbon Tailored Ni-Ga Intermetallic Catalyst

Xiaohu Ge,^{a,#} Zhouhong Ren,^{b,#} Yueqiang Cao,^{*a} Xi Liu,^b Jing Zhang,^a Gang Qian,^a

Xueqing Gong,^c Liwei Chen,^b Xinggui Zhou,^a Weikang Yuan,^a Xuezhi Duan^{*a}

^a State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China

^b School of Chemistry and Chemical Engineering, In-situ Center for Physical Sciences, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China

^c Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China

[#] These authors contributed equally to this work.

*Corresponding Authors: yqcao@ecust.edu.cn; xzduan@ecust.edu.cn

Intensity (a.u.)

Fig. S1. Comparison for experimental and simulated XRD patterns of the Ni, Ni₃Ga and Ni₃GaC_{0.5} catalysts.

Fig. S2. XRD pattern of the $Ni_3GaC_{0.5}$ catalyst.

Fig. S3. XRD pattern of the Ni catalyst treated at 300 $^{\circ}$ C under 1.0% C₂H₂/N₂ atmosphere for 3h.

Fig. S4. SEM image of the Ni catalyst treated at 500 °C under 1.0% C_2H_2/N_2 atmosphere for 3h.

Fig. S5. The optimized structures of bulk Ni, Ni₃Ga and Ni₃GaC_{0.5}. R_{oct} is the calculated radius of octahedral site in the corresponding face-centered cubic crystals.

Fig. S6. HRTEM images of the Ni catalyst, where the inset is the corresponding FFT patterns.

Fig. S7. (a) HAADF-STEM images of the Ni catalyst and (b) the corresponding histogram of the particle size distributions.

Fig. S8. HAADF-STEM EDS mapping of the Ni_3Ga catalyst.

Fig. S9. HAADF-STEM EDS mapping of the $\rm Ni_3GaC_{0.5}$ catalyst.

Fig. S10. HAADF-STEM images of the Ni catalyst, in which the insets are the corresponding EDS line-scanning profile analysis.

Fig. S11. HAADF-STEM EDS mapping of the Ni catalyst.

Fig. S12. The EXAFS oscillation functions at the Ni K-edge of Ni, Ni_3Ga and $Ni_3GaC_{0.5}$ catalysts.

Fig. S13. Fourier transforms of the experimental and fitted EXAFS spectra of Ni at Ni K-edge.

Fig. S14. Fourier transforms of the experimental and fitted EXAFS spectra of Ni₃Ga at Ni K-edge.

Fig. S15. Fourier transforms of the experimental and fitted EXAFS spectra of $Ni_3GaC_{0.5}$ at Ni K-edge.

		/	J J	0.5	0	
Sample	Shell	Nª	Rb	$\Delta E_0 (eV)^c$	σ²(10 ⁻³ Ų) ^d	R factor ^e
Ni	Ni-Ni	10.3±1.6	2.49±0.03	7.4±0.8	4.1±0.4	0.009
Ni ₃ Ga —	Ni-Ni	7.5±1.1	2.52±0.02	6.3±1.4	6.5±0.7	0.007
	Ni-Ga	4.3±1.3	2.54±0.01	8.1±1.5	5.4±1.1	
	Ni-Ni	6.5±1.5	2.53±0.02	6.5±0.9	3.5±0.5	_
Ni ₃ GaC _{0.5}	Ni-Ga	3.1±1.4	2.54±0.03	5.7±2.2	7.7±1.4	0.005
	Ni-C	1.5±0.9	1.84±0.01	7.9±0.6	4.2±0.8	

Table S1. Structural parameters of Ni, Ni $_3$ Ga and Ni $_3$ Gac $_{0.5}$ from the EXAFS fitting.

^aN is coordination number; ^bR is the internal atomic distance; ^c ΔE_0 is the edge-energy shift; ^d σ^2 is Debye-Waller factor; ^eR-factor represents the fitness of data processing.

Fig. S16. Wulff crystals for Ni, Ni₃Ga and Ni₃GaC_{0.5} crystallites, where the crystal facets denoted by Miller indices are shown by different color.

Fig. S17. Schematical illustrations of (a) Ni (111), (b) Ni₃Ga (111), (c) Ni₃GaC_{0.5} (111), (d) Ni₃Ga (200) and (e) Ni₃GaC_{0.5} (200) surfaces.

Fig. S18. Bader charge analysis of (a) Ni_3Ga (111) and (b) $Ni_3GaC_{0.5}$ (111) surfaces, the numbers of valence electrons were labeled (Ni in black, Ga in blue and C in white) on the atoms, the unit of the data is electron (e). The arrows point out the electron transfer direction.

Fig. S19. C_2H_6 selectivity as a function of reaction temperature over the Ni, Ni₃Ga and Ni₃GaC_{0.5} catalysts.

Fig. S20. C_4 selectivity as a function of reaction temperature over the Ni, Ni₃Ga and Ni₃GaC_{0.5} catalysts.

Fig. S21. C_2H_6 selectivity with time on stream over the Ni, Ni₃Ga and Ni₃GaC_{0.5} catalysts.

Fig. S22. C_4 selectivity with time on stream over the Ni, Ni₃Ga and Ni₃GaC_{0.5} catalysts.

Table S2. Adsorption energies (E_{ads} /eV) and Gibbs free adsorption energies (G_{ads} /eV) of C₂H₂ on the Ni₃GaC_{0.5} (111) surface.

Table S3. Adsorption energies (E_{ads} /eV) and Gibbs free adsorption energies (G_{ads} /eV) of C₂H₄ on the Ni₃GaC_{0.5} (111) surface.

Table S4. Adsorption energies (E_{ads} /eV) and Gibbs free adsorption energies (G_{ads} /eV) of C₂H₂ on the Ni₃Ga (111) surface.

surface. Top View

Top View		
Side View		
E _{ads} (eV)	-1.10	-0.74
G _{ade} (eV)	-0.92	-0.52

Table S5. Adsorption energies (E_{ads} /eV) and Gibbs free adsorption energies (G_{ads} /eV) of C₂H₄ on the Ni₃Ga (111) surface.

Table S6. Adsorption energies (E_{ads} /eV) and Gibbs free adsorption energies (G_{ads} /eV) of C₂H₂ on the Ni(111) surface.

Top View			
Side View			
E _{ads} (eV)	-2.75	-1.62	-2.36
G _{ads} (eV)	-2.45	-1.31	-2.05

Table S7. Adsorption energies (E_{ads} /eV) and Gibbs free adsorption energies (G_{ads} /eV) of C₂H₄ on the Ni (111) surface.

Table S8. Adsorption energies (E_{ads} /eV) and Gibbs free adsorption energies (G_{ads} /eV) of C₂H₄ on the Ni₃Ga (200) surface.

Table S9. Adsorption energies (E_{ads} /eV) and Gibbs free adsorption energies (G_{ads} /eV) of C₂H₄ on the Ni₃GaC_{0.5} (200) surface.

Reaction Coordinate

Fig. S23. Energy profiles of the overall acetylene hydrogenation reactions over the Ni(111), $Ni_3Ga(111)$ and $Ni_3GaC_{0.5}(111)$ surfaces.

The turnover frequency (TOF) can be calculated to evaluate the activity. According to the energetic span theory proposed by Sason Shaik et al.¹, the TOF can be calculated by:

TOF
$$\approx \frac{k_B T}{h} e^{-G_a^{eff}/RT}$$
 (1)

where k_B , T and h are the Boltzmann constant, the reaction temperature, and the Planck constant, respectively. G_{a}^{eff} is the effective barrier of a specific reaction defined as^{2, 3}:

 $G_{a}^{eff} = \begin{cases} G_{TDTS} - G_{TDI} & \text{if TDTS appears after TDI} \\ G_{TDTS} - G_{TDI} + \Delta G & \text{if TDTS appears before TDI} \end{cases}$ (a) (2)

TDTS is the TOF determining transition state related to the hydrogenation step with the highest hydrogenation barrier; TDI stands for the TOF determining intermediate, which is the most stable adsorption state along the energy profile; ΔG is the reaction heat from reactant to TDI.

According to Eq. (1), the G_{a}^{eff} values at a specific temperature (i.e., 383.15 K in this work) can be employed to compare the difference in hydrogenation activities on the Ni, Ni₃Ga and Ni₃GaC_{0.5}, and lower G_{a}^{eff} indicates higher activity. Along this line, the energy profiles for the hydrogenation of C₂H₂ were calculated and shown in **Fig. S23**. Here, we take the hydrogenation of C₂H₂ on the Ni(111) surface as an example to show how to obtain the G_{a}^{eff} from the energy profiles (**Fig. S23** and **24**). The first step is to find the TDI intermediate, which is the most stable adsorption state in the energy profile. For the hydrogenation of C₂H₂ on the Ni(111) surface, the TDI is found to be the initial state of C₂H₂ and H co-adsorption, which is denoted as (C₂H₂*+H*)-ID. Then, the second step is to find the elementary step with the highest energy barriers, and the corresponding transition state is the TDTS intermediate. On the Ni(111) surface, the TDTS is found to be the transition state of the $C_2H_2^*$ hydrogenation to $C_2H_3^*$ (**Fig. S23** and **S24**). As TDTS appears after TDI, the G_a^{eff} should be calculated according to Eq. 2(a). The value of G_a^{eff} is calculated to be 1.19 eV.

Table S10. The energies of TDTS and TDI, and the calculated G_a^{eff} for hydrogenation of C₂H₂ to C₂H₄ over the Ni(111), Ni₃Ga(111) and Ni₃GaC_{0.5}(111) surfaces.

	Ni(111)	Ni₃Ga(111)	Ni ₃ GaC _{0.5} (111)
TDTS	TS-1	TS-1	TS-1
G _{TDTS} (eV)	-1.74	-1.60	-1.08
TDI	(C ₂ H ₂ *+H*)-ID	(C ₂ H ₂ *+H*)-ID	(C ₂ H ₂ *+H*)-ID
G _{TDI} (eV)	-2.93	-2.95	-2.75
G ^{eff} a (eV)	1.19	1.35	1.67

Fig. S24. Configurations of intermediates involved in the hydrogen diffusion and acetylene hydrogenation over the Ni(111) surface. "ID", "TD" and "FD" stand for the initial states, transition states the final states of the diffusion processes, respectively.

Fig. S25. Configurations of intermediates involved in the hydrogen diffusion and acetylene hydrogenation over the $Ni_3Ga(111)$ surface. "ID", "TD" and "FD" stand for the initial states, transition states the final states of the diffusion processes, respectively.

Fig. S26. Configurations of intermediates involved in the hydrogen diffusion and acetylene hydrogenation over the $Ni_3GaC_{0.5}(111)$ surface. "ID", "TD" and "FD" stand for the initial states, transition states the final states of the diffusion processes, respectively.

Fig. S27. Arrhenius plots for acetylene conversion over the Ni, Ni_3Ga and $Ni_3GaC_{0.5}$ catalysts.

Fig. S28. Free energy profiles for sequential hydrogenation processes of acetylene to ethane on the Ni (111) surface.

Fig. S29. Free energies for the ethylene desorption versus hydrogenation over the Ni_3Ga (200) surface.

Fig. S30. Free energies for the ethylene desorption versus hydrogenation over the $Ni_3GaC_{0.5}$ (200) surface.

	G _{des} (eV)	G _a (eV)	ΔG (eV)
Ni (111)	0.82	0.42	-0.40
Ni₃Ga (111)	0.92	0.55	-0.37
Ni ₃ GaC _{0.5} (111)	0.69	1.18	0.49
Ni₃Ga (200)	0.58	0.31	-0.27
Ni₃GaC _{0.5} (200)	0.49	0.63	0.14

Table S11. Free energies for the ethylene desorption versus hydrogenation over the Ni (111), Ni₃Ga (111), Ni₃GaC_{0.5} (111), Ni₃GaC_{0.5} (111), Ni₃GaC_{0.5} (200) and Ni₃GaC_{0.5} (200) surfaces.

 G_{des} and G_a are the desorption free energy of ethylene and the free energy barrier of ethylene hydrogenation, respectively. $\Delta G = G_a - G_{des}$ is employed to estimate the selectivity of ethylene product, and a more positive ΔG value indicates better selectivity to ethylene.

REFERENCES

- 1. S. Kozuch and S. Shaik, J. Am. Chem. Soc., 2006, **128**, 3355-3365.
- 2. S. Kozuch and J. M. L. Martin, ACS Catal., 2011, 1, 246-253.
- 3. S. Kozuch and S. Shaik, Acc. Chem. Res., 2011, 44, 101-110.